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Abstract

Simulations of an argon-helium plasma are performed for two high pressure dis-

charge scenarios in an attempt to find a uniform, large-volume plasma with Ar(1s5)

metastable densities on the order of 1013 cm−3 for use as the ground state in an

optically pumped rare gas laser. An analysis of a pulsed direct current discharge is

performed for a 7% argon in helium mixture at a pressure of 270 Torr using both

zero and one-dimensional models. Kinetics of species relevant to the operation of

an optically pumped rare gas laser are analyzed throughout the pulse duration to

identify key reaction pathways. Time dependent densities, electron temperatures,

current densities, and reduced electric fields in the positive column are analyzed over

a single 20 µs pulse, showing temporal agreement between the two models. Through

the use of a robust reaction rate package, radiation trapping is determined to play

a key role in reducing Ar(1s5) metastable loss rates through the reaction sequence

Ar(1s5) + e− → Ar(1s4) + e− followed by Ar(1s4)→ Ar+~ω. Collisions with He are

observed to be responsible for Ar(2p9) mixing, with nearly equal rates to Ar(2p10)

and Ar(2p8). Additionally, dissociative recombination of Ar+
2 is determined to be the

dominant electron loss mechanism for the simulated discharge conditions and cavity

size.

Simulations are also performed for an α-mode radio frequency dielectric barrier

discharge with varying mixtures of argon and helium at pressures ranging from 200-

500 Torr using both zero and one-dimensional models. Metastable densities are ana-

lyzed as a function of argon fraction and pressure to determine the optimal conditions

maximizing metastable density for use in an optically pumped rare gas laser. Argon

fractions corresponding to the peak metastable densities are found to be pressure

v
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dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500

Torr. A decrease in metastable density is observed as pressure is increased due to a

diminution in the reduced electric field and a quadratic increase in metastable loss

rates through Ar∗2 formation. A zero-dimensional effective direct current model of

the dielectric barrier discharge is implemented, showing agreement with the trends

predicted by the one-dimensional fluid model in the bulk plasma.

Finally, optically pumped rare gas laser performance is analyzed as a function

of the Ar(2p) + M → Ar(1s) + M branching ratio. Due to the uncertainty in the

branching ratio, a sensitivity study is performed to determine the effect on output and

absorbed pump laser intensities. The analysis is performed using a radio frequency

dielectric barrier discharge as the source of metastable production for a variety of

argon in helium mixtures over pressures ranging from 200 to 500 Torr. Peak output

laser intensities show a factor of 7 increase as the branching ratio is increased from

25% to 100%. The collection of excited Ar species, Ar∗, in Ar(1s4) is determined

to play the primary role in laser performance as a function of branching ratio as the

result of a reduction in the density of species directly involved with laser performance.
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ANALYSIS OF AR(1S5) METASTABLE POPULATIONS IN HIGH PRESSURE

ARGON-HELIUM GAS DISCHARGES

I. Introduction

A deployable, continuous wave, high energy laser weapon system with excellent

beam quality and a renewable power source has been desired for many decades. Chem-

ical lasers of the past required the use of bulky, volatile chemicals, making renewabil-

ity and portability problematic. The recent development of diode-pumped solid state

lasers with powers near 100 kW has sparked interest in renewable, electrically driven

lasers, although, the intense heat produced in solid state lasers induces poor beam

quality. Applying diode-pumping to a gas phase medium, as demonstrated by the

diode-pumped alkali laser (DPAL), takes advantage of the thermal management in-

herent to gas lasers to produce renewable lasers with excellent beam quality [Krupke

et al., 2003]. However, the aggressive nature of the alkali metal vapors creates tech-

nical challenges such as photo-induced chemical damage to the cavity windows and

“laser snow” due to reactions with the spin-orbit relaxation agent [Pitz et al., 2011].

In an attempt to realize the positive qualities of a DPAL using a medium without

a chemically aggressive nature, Han and Heaven [2012] successfully demonstrated a

rare gas laser system that utilizes the first excited electronic state, metastable Rg(1s5)

using Paschen notation, as the laser ground state. Optical pumping to the Rg(2p)

manifold provides spectral properties similar to DPAL systems while maintaining the

inert properties inherent in rare gases. As in the DPAL systems, the atmospheric

transmission characteristics of a rare gas system are conducive to operation as a high

energy laser weapon.

1
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An optically pumped rare gas laser (OPRGL), as demonstrated by Han et al.

[2013], uses a diode laser to pump metastable Rg(1s5) atoms generated in a gas

discharge to the Rg(2p9) level. At elevated pressures, rapid collisional relaxation

from Rg(2p9) to Rg(2p10) allows for a population inversion and subsequent lasing to

Rg(1s5) as displayed in Figure 1. Diode laser absorption, and hence optical gain,

are dependent on Rg(1s5) densities [Rawlins et al., 2015; Demyanov et al., 2013].

Output laser intensities above 100 W/cm2 may be possible with a uniform volume

of metastable densities on the order of 1013 cm−3 for an active medium length of 1.9

cm [Han et al., 2014]. The broad linewidths of diode lasers require near-atmospheric

pressures to broaden the absorption linewidth for efficient pump laser absorption.

Additionally, the non-adiabatic transition rate from Rg(2p9) to Rg(2p10), responsible

for establishing a population inversion, is enhanced at elevated pressures.

The high pressures required for laser operation mandate a stable gas discharge

capable of operating at high pressures. Thermal instabilities are problematic for

high pressure gas discharges due to elevated current densities [Raizer, 1997]. These

thermal instabilities limit the types of discharges capable of maintaining stability at

near-atmospheric gas pressures [Haas, 1973; Fridman et al., 2005]. Pulsed discharges

are able to maintain stability at high pressures through a reduction in thermal insta-

bilities caused by the down time in-between pulses [Raizer, 1997]. Additionally, for

the same averaged power, the average plasma density of a pulsed system is greater

than a steady-state direct current (DC) discharge as a result of a reduction in elec-

tron temperature in-between pulses [Ashida et al., 1995; Lieberman and Lichtenberg,

2005]. Similarly, radio frequency dielectric barrier discharges (RF-DBDs) are able to

maintain stability at high pressures due to a limited ionization period occurring near

the cycle peaks and an increased energy threshold for instability formation [Raizer

et al., 1995]. While there are other types of discharges capable of maintaining stability
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Figure 1. A diagram of energy levels pertinent to an optically pumped rare gas laser
with Ar as the rare gas. Optical pumping from Ar(1s5) to Ar(2p9) is followed by a non-
adiabatic transition to Ar(2p10) and subsequent lasing to Ar(1s5). Lasing to Ar(1s4) is
also possible, and Ar(2p8) is included due to its proximity to the pumping level Ar(2p9).

at high pressures, such as microwave driven microplasmas and microhollow cathode

discharges, this analysis will focus on pulsed DC discharges and RF-DBDs.

Han et al. [2013] demonstrated the use of a pulsed DC circuit to produce an

OPRGL in an Ar-He mixture at atmospheric pressures. Voltages in the range of 1000-

2000 V were used for microsecond pulses across a parallel plate geometry. Metastable

densities, measured through pump laser absorption, indicated a decay to half the

peak value approximately 7 µs after pulse initiation. More recently, Han et al. [2016]

performed an Ar-He pulsed DC discharge experiment at a pressure of 270 Torr using

a mixture of 7% Ar in He. Pump laser absorption, plasma fluorescence, electrode

voltage, and discharge current were measured to provide a complete picture of the

discharge conditions for 1000 V pulses with temporal widths of 1, 20, and 35 µs. The

kinetics controlling the time-dependent metastable behavior during a pulse are not

well understood, and will be analyzed in this document.
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Several kinetic studies of OPRGLs have been performed recently [Demyanov et al.,

2013; Yang et al., 2015; Rawlins et al., 2015; Han et al., 2014]. One analysis of an Ar-

He mixture at atmospheric pressures concluded that a mixture of approximately 1%

Ar in He results in the largest total efficiency, defined as the output power divided by

the sum of discharge and pump powers [Demyanov et al., 2013]. The study observed

that an increase in Ar-fraction increases production of Ar(1s5), but also results in a

larger collision relaxation rate from the Ar(2p) manifold down to the Ar(1s) manifold

in addition to an increase in the Ar(1s5) loss rate through excimer formation. A

separate kinetic analysis studied OPRGL performance over a variety of metastable

densities, showing the possibility of kilowatt laser powers for an OPRGL system with

Ar(1s5) densities on the order of 1013 cm−3 and pump laser intensities in the 2-5

kW/cm2 range [Yang et al., 2015].

An experimental and computational analysis of microwave resonator-driven mi-

croplasmas at a variety of Ar-He mixtures and pressures ranging from 100-730 Torr

found that an Ar-fraction near 5% at a pressure of 100 Torr produces the largest

metastable densities [Hoskinson et al., 2016]. Metastable densities on the order of

1013 cm−3 were measured for the microplasmas at a pressure of 100 Torr, with a

decrease in the Ar(1s5) density as the pressure increased. A related experiment mea-

sured a laser output of 22 mW for an absorbed pump power of ∼ 40 mW and an

estimated metastable density of 3× 1012 cm−3 [Rawlins et al., 2015]. This measure-

ment provides an optical efficiency of approximately 55%. The gain, G, was found to

be linear with respect to metastable density, following [Ar(1s5)]/G = 4× 1012 cm−2,

measured at 760 Torr for a mixture of 2% Ar in He. Additionally, a computational

analysis of the laser kinetics found a better fit to the data when an Arrhenius temper-

ature scaling was applied to the neutral collision transfer rates between the different

excited Ar species.
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The desired metastable density on the order of 1013 cm−3 has been achieved us-

ing microwave resonator-driven microplasma arrays with cross-sectional areas on the

order of 1 mm2 [Miura and Hopwood, 2011; Rawlins et al., 2015]. Increasing the cross-

sectional area of the discharge allows for increased pump laser absorption caused by

efficient alignment of the pump laser with the region of high metastable densities.

This document outlines approaches to produce uniform metastable densities at high

pressures in volumes with cross-sectional areas greater than 1 mm2.

A zero-dimensional approach to modeling high pressure discharges has been de-

veloped and outlined by Eismann [2011]. The creation of the ZDPlasKin model

[Pancheshnyi et al., 2008] along with the Boltzmann solver BOLSIG+ [Hagelaar and

Pitchford, 2005], allows for a robust method of calculating positive column densi-

ties and kinetics. Applying this approach to an RF-DBD, following the procedure

outlined in Raizer et al. [1995], allows for a computational inexpensive method for

estimating densities in the bulk plasma of an RF-DBD.

Extending the simulations to one-dimension is achieved through the implementa-

tion of a fluid model, which has been used for both low and high pressure discharges

in many previous analyses [Lymberopoulos and Economou, 1993; Boeuf and Pitch-

ford, 1995; Farouk et al., 2006; Gogolides and Sawin, 1992; Kushner, 2005; Boeuf

and Pitchford, 2004]. While some of the intrinsic approximations of fluid models are

known to fail for high reduced electric field magnitudes with large spatial gradients,

as found in the cathode layer of a DC glow discharge [Raizer, 1997; Hagelaar and

Pitchford, 2005], the approach is appropriate for modeling the bulk plasma, which is

the region of interest to a gas laser.

Rate coefficients for collisional de-excitation following Ar(2p) +M → Ar(1s) +M

are well documented [Chang and Setser, 1978; Han and Heaven, 2014]. However, the

branching ratios to the specific Ar(1s) levels are uncertain. Additionally, as discussed
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in Chang and Setser [1978], the rate coefficients depend strongly on diabatic coupling

near crossings of the potential energy surfaces, not just the energy difference between

states. Due to the uncertainty in the branching ratios, previous kinetic studies of

OPRGL performance have assumed that all Ar(2p) + M → Ar(1s) + M collisions

channel directly to Ar(1s5) bypassing the other Ar(1s) levels [Demyanov et al., 2013;

Yang et al., 2015; Rawlins et al., 2015; Han et al., 2014]. The effect of the branching

ratios on OPRGL performance is investigated in this analysis.

This document is outlined as follows: Chapter II provides the background the-

ory used throughout the remainder of the document. First, the physics of gas dis-

charge simulations are introduced, including the reaction rate package developed for

an OPRGL. Then, an overview of pulsed DC discharges and RF-DBDs is provided.

Finally, the computational aspects of gas discharge simulation implemented in this

analysis are presented.

Chapter III analyzes the pulsed circuit experiment described in Han et al. [2016].

In addition to simulating the measured parameters over time, the zero-dimensional

analysis is used to vet the reaction rate package and perform a sensitivity analysis.

Simulations are extended to one-dimension, providing the spatial metastable density

profile and verifying the positive column predictions of the zero-dimensional approach.

Furthermore, EEDF calculations for the one-dimensional model are varied over the

pulse duration to test the effectiveness of using a single set of pre-calculated EEDFs.

Chapter IV analyzes the RF-DBD experiments performed by Eshel et al. [2016].

A one-dimensional fluid model is used to calculate metastable density dependence on

Ar-fraction, pressure, and applied voltage. The α to γ-mode transition for a 15%

Ar in He mixture at a pressure of 200 Torr is simulated as a part the analysis as a

function of applied voltage. Additionally, a zero-dimensional effective DC model of

the bulk plasma is implemented and compared to the one-dimensional simulations.
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A simplified zero-dimensional model is also developed, providing insight into the key

kinetics controlling metastable behavior as a function of pressure and Ar-fraction.

Finally, Chapter V analyzes OPRGL performance for a variety of Ar-He mixtures

and pressures using an RF-DBD as the discharge. Absorbed pump laser intensities

and output laser intensities are calculated as a function of Ar-fraction, pressure, and

Ar(2p) +M → Ar(1s) +M branching ratio using a time-dependent zero-dimensional

discharge model including laser kinetics. Due to the uncertainty in the branching

ratio, a sensitivity study of the branching ratio influence on laser intensities is per-

formed. Furthermore, a simplified laser kinetic model is developed and compared to

the full discharge laser model.

The overarching goal of this research is to understand the discharge conditions

and chemical kinetics of an Ar-He plasma such that an OPRGL system could be

developed with a continuous, large volume source of Ar(1s5) capable of maintaining

densities on the order of 1013 cm−3. Additionally, we strive to understand the trade-

offs between metastable density, pressure, and Ar-fraction with respect to OPRGL

performance.
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II. Background

This chapter provides the background theory used throughout the remainder of the

document. First, the physics of gas discharge simulations are introduced, including

the reaction rate package developed for an optically pumped rare gas laser. Then,

challenges of high pressure gas discharges are discussed, and an overview of pulsed

direct current discharges and radio frequency dielectric barrier discharges is provided.

Finally, the computational aspects of gas discharge simulation used throughout this

analysis are presented.

2.1 Physics of Gas Discharge Simulation

This section provides an introduction to the physics of gas discharges, focusing

on a few key aspects of the discharges analyzed throughout the document: chemical

kinetics, ambipolar diffusion, the reduced electric field, and similarity parameters.

Chemical Kinetics.

To properly model the chemical kinetics of an Ar-He plasma, a set of pertinent

species must first be selected. Ar has a large variety of excited electronic energy

levels, allowing for many possible laser schemes (see Figure 2 for the dipole allowed

transitions in the Ar(1s) and Ar(2p) manifolds). However, attempting to model all

possible species would be unwieldy and unnecessary for the focus of this study.

A list of the species used to analyze OPRGL kinetics for both the zero and one-

dimensional models is displayed in Table 1. Excited Ar species Ar(1s5), Ar(2p10),

and Ar(2p9) are included due to their central role in OPRGL operation. Additionally,

Ar(1s4) and Ar(2p8) are retained because of their proximity to Ar(1s5) and Ar(2p9),

respectively. An additional excited species, Ar(h.l.), is used as a macro-species en-
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Figure 2. A diagram of the dipole allowed transitions for the Ar(1s) and Ar(2p) mani-
folds [Eshel et al., 2016].
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compassing all higher energy electronic levels of Ar starting with Ar(3d12). The

remaining Ar(1s) and Ar(2p) species are ignored to limit the reaction rate package

complexity.

Excited levels of He are represented by the macro-speciesHe∗. At near-atmospheric

pressures, dimers play an important kinetic role requiring the macro-species He∗2 and

Ar∗2, which represent all He and Ar dimer energy levels. Finally, the ion species

Ar+, Ar+
2 , He+, He+

2 , and HeAr+ are included. The energy used to represent the

macro-species is the lowest energy level for the collection of species represented by

the macro-species. Dimer energies of 11.06 and 17.97 eV are used for Ar∗2 and He∗2,

respectively [Shon, 1993]. A list of reactions for the species of interest is displayed

in Table 2. This reaction rate package includes electron impact, recombination, two-

heavy-body, three-heavy-body, and radiative rate coefficients.

Table 1. A list of Ar-He species relevant to the operation of an optically pumped rare
gas laser and their corresponding energy levels. Macro-species energies are represented
by the lowest energy level for the collection of species represented by the macro-species.

Species Energy (eV)
Ar∗2 11.06
Ar(1s5) 11.55
Ar(1s4) 11.62
Ar(2p10) 12.91
Ar(2p9) 13.08
Ar(2p8) 13.10
Ar(h.l.) 13.85
Ar+

2 14.50
HeAr+ 15.74
Ar+ 15.76
He∗2 17.97
He∗ 19.80
He+

2 22.23
He+ 24.58

Electron impact rate coefficients are calculated using BOLSIG+, which uses a two-

term approximation to solve the Boltzmann equation, providing a non-Maxwellian
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electron energy distribution function (EEDF) [Hagelaar and Pitchford, 2005]. The

main driver of the EEDF is the reduced electric field, E/N , where N is the neutral

gas density. Reduced electric fields are calculated over time to provide an updated

EEDF for the current discharge conditions. Transport parameters, including electron

mobility and diffusion coefficients, are also calculated from the EEDF.

Table 2. A list of reaction rate coefficients used to model high pressure Ar-He gas
discharge kinetics for species relevant to the operation of an optically pumped rare
gas laser. Te is in eV and Tgas is in K. A discussion of the BOLSIG+ calculated rate
coefficients can be found in Hagelaar and Pitchford [2005].

Rate Coefficient

Reaction

[
1

s
,

cm3

s
, or

cm6

s

]
Reference

Electron Impact

Ar + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]

Ar(1s5) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]

Ar(1s4) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]a

Ar(2p10) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]a

Ar(2p9) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]a

Ar(2p8) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]a

Ar(h.l.) + e− → Ar+ + e− + e− BOLSIG+ Phelps [2008]a

Ar + e− ↔ Ar(1s5) + e− BOLSIG+ Biagi [2011]

Ar + e− ↔ Ar(1s4) + e− BOLSIG+ Biagi [2011]

Ar + e− ↔ Ar(2p10) + e− BOLSIG+ Biagi [2011]

Ar + e− ↔ Ar(2p9) + e− BOLSIG+ Biagi [2011]

Ar + e− ↔ Ar(2p8) + e− BOLSIG+ Biagi [2011]

Ar + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]b

Ar(2p10) + e− ↔ Ar(2p9) + e− BOLSIG+ Stauffer [2014]

Ar(2p10) + e− ↔ Ar(2p8) + e− BOLSIG+ Stauffer [2014]

Ar(2p10) + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]c

Ar(2p9) + e− ↔ Ar(2p8) + e− BOLSIG+ Stauffer [2014]d

Ar(2p9) + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]c

Ar(2p8) + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]c

Ar(1s4) + e− ↔ Ar(2p10) + e− BOLSIG+ Stauffer [2014]

Ar(1s4) + e− ↔ Ar(2p9) + e− BOLSIG+ Stauffer [2014]

Ar(1s4) + e− ↔ Ar(2p8) + e− BOLSIG+ Stauffer [2014]

Ar(1s4) + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]c

Ar(1s5) + e− ↔ Ar(1s4) + e− BOLSIG+ Stauffer [2014]

Ar(1s5) + e− ↔ Ar(2p10) + e− BOLSIG+ Stauffer [2014]

Ar(1s5) + e− ↔ Ar(2p9) + e− BOLSIG+ Stauffer [2014]

Ar(1s5) + e− ↔ Ar(2p8) + e− BOLSIG+ Stauffer [2014]

Ar(1s5) + e− ↔ Ar(h.l.) + e− BOLSIG+ Biagi [2011]c

He + e− → He+ + e− + e− BOLSIG+ Phelps [2008], Rapp and Englander-Golden [1965]

He + e− ↔ He∗ + e− BOLSIG+ Phelps [2008], Maier-Leibnitz [1935]

He∗ + e− → He+ + e− + e− BOLSIG+ Phelps [2008], Maier-Leibnitz [1935]

Ar∗2 + e− → Ar+2 + e− + e− BOLSIG+ McCann et al. [1979]

Ar∗2 + e− → Ar + Ar + e− BOLSIG+ Gregório et al. [2012]

Ar∗2 + e− → Ar(1s5) + Ar + e− 1.00× 10−8 exp(−1.00/Te) Neeser et al. [1997]
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Rate Coefficient

Reaction

[
1

s
,

cm3

s
, or

cm6

s

]
Reference

Ar+2 + e− → Ar+ + Ar + e− 1.36× 10−6 exp(−2.09/Te) Bultel et al. [2002]

He∗2 + e− → He+2 + e− + e− 9.75× 10−10T0.71
e exp(−3.40/Te) Rauf and Kushner [1999]

He∗2 + e− → He + He + e− 3.80× 10−9 Deloche et al. [1976]

He+2 + e− → He+ + He + e− 1.06× 10−7T−3
e exp(−9.97/Te) Jonkers et al. [2003]

Recombination

Ar+ + e− + e− → Ar(h.l.) + e− 7.20× 10−27T−4.5
e Shon and Kushner [1994]

Ar+ + e− + M → Ar(h.l.) + M 1.10× 10−30T−2.5
e Bekefi [1976]

He+ + e− + e− → He∗ + e− 5.10× 10−27T−4.5
e Bekefi [1976]

He+ + e− + M → He∗ + M 1.10× 10−30T−2.5
e Bekefi [1976]

He+2 + e− → He∗ + He 5.00× 10−9T−0.5
e Shon and Kushner [1994]

Ar+2 + e− → Ar(h.l.) + Ar 7.34× 10−8T−0.67
e Mehr and Biondi [1968]

HeAr+ + e− → Ar(h.l.) + He 7.34× 10−9T−0.67
e Shon and Kushner [1994]e

Two-Heavy-Body

Ar(1s5) + Ar → Ar + Ar 2.30× 10−15 Tachibana [1986]

Ar(1s5) + He→ Ar + He 1.60× 10−14 Han and Heaven [2016]

Ar(1s5) + Ar ↔ Ar(1s4) + Ar 2.10× 10−15 Demyanov et al. [2013]

Ar(1s4) + He↔ Ar(1s5) + He 1.00× 10−13 Han and Heaven [2014]f

Ar(2p10) + Ar ↔ Ar(1s) + Ar 1.50× 10−11√Tgas/300 Zhu and Pu [2010]g

Ar(2p10) + He↔ Ar(1s) + He 0.50× 10−13√Tgas/300 Han and Heaven [2014]g,h

Ar(2p9) + Ar ↔ Ar(1s) + Ar 3.00× 10−11√Tgas/300 Zhu and Pu [2010]g

Ar(2p9) + He↔ Ar(1s) + He 0.20× 10−11√Tgas/300 Han and Heaven [2014]g,h

Ar(2p8) + Ar ↔ Ar(1s) + Ar 4.00× 10−11√Tgas/300 Zhu and Pu [2010]g

Ar(2p8) + He↔ Ar(1s) + He 0.10× 10−11√Tgas/300 Han and Heaven [2014]g,h

Ar(2p8) + Ar ↔ Ar(2p9) + Ar 1.10× 10−11 Han and Heaven [2014]

Ar(2p8) + He↔ Ar(2p9) + He 4.50× 10−11 Han and Heaven [2014]

Ar(2p8) + Ar ↔ Ar(2p10) + Ar 1.10× 10−11 Han and Heaven [2014]

Ar(2p8) + He↔ Ar(2p10) + He 0.40× 10−11 Han and Heaven [2014]

Ar(2p9) + Ar ↔ Ar(2p10) + Ar 2.60× 10−11 Han and Heaven [2014]

Ar(2p9) + He↔ Ar(2p10) + He 1.60× 10−11 Han and Heaven [2014]

Ar(h.l.) + M ↔ Ar(2p) + M 1.00× 10−11 Shon and Kushner [1994]g,i

He∗ + He∗ → He+ + He + e− 1.50× 10−9 Emmert et al. [1988]

Ar(1s) + Ar(1s)→ Ar+ + Ar + e− 5.00× 10−10√Tgas/300 Zhu and Pu [2010]

Ar(1s) + Ar(2p)→ Ar+ + Ar + e− 5.00× 10−10√Tgas/300 Zhu and Pu [2010]

Ar(2p) + Ar(2p)→ Ar+ + Ar + e− 5.00× 10−10√Tgas/300 Shon and Kushner [1994]h

Ar(h.l.) + Ar(1s)→ Ar+ + Ar + e− 7.00× 10−10√Tgas/300 Zhu and Pu [2010]

Ar+2 + M → Ar+ + Ar + M 6.10× 10−6T−1
gas exp(−15, 130/Tgas) Jonkers et al. [2003]i

He+2 + M → He+ + He + M 1.40× 10−6T−0.67
gas exp(−28, 090/Tgas) Jonkers et al. [2003]i

HeAr+ + Ar → Ar+ + He + Ar 2.94× 10−11√Tgas exp(−298/Tgas) estimatedj

HeAr+ + He→ Ar+ + He + He 1.17× 10−11√Tgas exp(−298/Tgas) estimatedj

Ar∗2 + Ar∗2 → Ar+2 + Ar + Ar + e− 5.00× 10−10 Kannari et al. [1985]

He∗2 + He∗2 → He+2 + He + He + e− 1.50× 10−9 Deloche et al. [1976]

He+ + Ar → He + Ar+ 1.00× 10−13 Johnsen et al. [1973]

He∗ + Ar → Ar+ + He + e− 2.20× 10−11 Lindinger et al. [1974]k

He∗ + Ar → HeAr+ + e− 4.90× 10−11 Lindinger et al. [1974]k

He+2 + Ar → Ar+ + He + He 2.20× 10−10 Lee et al. [1976]

He∗2 + Ar → Ar+ + He + He + e− 3.10× 10−10 Shon [1993]

Three-Heavy-Body

Ar+ + Ar + Ar → Ar+2 + Ar 2.25× 10−31(300/Tgas)0.4 Jones et al. [1980]

Ar+ + Ar + He→ Ar+2 + He 1.13× 10−31(300/Tgas)0.4 Jones et al. [1980]l
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Rate Coefficient

Reaction

[
1

s
,

cm3

s
, or

cm6

s

]
Reference

He+ + He + He→ He+2 + He 0.83× 10−31(300/Tgas)0.6 Jones et al. [1980]

He+ + He + Ar → He+2 + Ar 1.66× 10−31(300/Tgas)0.6 Jones et al. [1980]l

He+ + Ar + Ar → Ar+2 + He 1.00× 10−31 Shon [1993]

Ar+ + He + Ar → HeAr+ + Ar 2.50× 10−32 Shon and Kushner [1994]

Ar+ + He + He→ HeAr+ + He 1.00× 10−32 Shon and Kushner [1994]

Ar(1s5) + Ar + Ar → Ar∗2 + Ar 3.60× 10−31T−0.6
gas Wieme and Lenaerts [1981]

Ar(1s5) + Ar + He→ Ar∗2 + He 1.80× 10−31T−0.6
gas Wieme and Lenaerts [1981]l

Ar(1s4) + Ar + Ar → Ar∗2 + Ar 0.95× 10−32 Wieme and Lenaerts [1981]

Ar(1s4) + Ar + He→ Ar∗2 + He 0.48× 10−32 Wieme and Lenaerts [1981]l

He∗ + He + He→ He∗2 + He 1.30× 10−33 Rauf and Kushner [1999]

He∗ + He + Ar → He∗2 + Ar 2.60× 10−33 Rauf and Kushner [1999]l

Radiative

Ar∗2 → Ar + Ar 3.13× 105 Rolin et al. [2007]

Ar(2p8)→ Ar(1s4) 2.20× 107 Kramida et al. [2015]

Ar(2p8)→ Ar(1s5) 9.30× 106 Kramida et al. [2015]

Ar(2p9)→ Ar(1s5) 3.30× 107 Kramida et al. [2015]

Ar(2p10)→ Ar(1s4) 5.40× 106 Kramida et al. [2015]

Ar(2p10)→ Ar(1s5) 1.90× 107 Kramida et al. [2015]

Ar(1s4)→ Ar 1.20× 108 Kramida et al. [2015]m

Ar(h.l.)→ Ar 1.00× 108 Zhu and Pu [2010]

Ar(h.l.)→ Ar(2p10) 3.00× 106 Zhu and Pu [2010]

Ar(h.l.)→ Ar(2p9) 4.00× 106 Zhu and Pu [2010]

Ar(h.l.)→ Ar(2p8) 3.00× 106 Zhu and Pu [2010]

Ar(h.l.)→ Ar(1s5) 1.00× 106 Zhu and Pu [2010]n

Ar(h.l.)→ Ar(1s4) 1.00× 106 Zhu and Pu [2010]n

aShifted in energy relative to the Ar(1s5) ionization cross section

bThe Ar(3d12) excitation cross section extracted from PROGRAM MAGBOLTZ is used for Ar(h.l.)

cShifted in energy relative to the Ar ground state excitation to Ar(3d12) and used for Ar(h.l.)

dShifted in energy relative to the Ar(2p10) excitation to Ar(2p8)

eFollowing Shon and Kushner [1994], using a value of 1/10 times the dissociative recombination rate for Ar+2
fRate coefficient corresponds to room temperature and is larger for temperatures above 300 K [Han and Heaven, 2014]

gAssuming equal branching

hAssuming
√

Tgas/300 temperature dependence following Zhu and Pu [2010]

iAssuming rate coefficients for He as the second body are the same as Ar as the second body

jCalculated from the forward rate using detailed balance with the HeAr+ parameters provided by Dabrowski et al. [1981]

kBranching ratio from Shon [1993]

lAssuming three-body rate coefficients with He as the third body are 1/2 the rate coefficient for Ar as the third body

mNot including radiation trapping

nAssuming equal branching from Ar(3p)

Metastable quenching rates due to collisions with neutrals via Ar(1s5) + M →

Ar + M play an important role in the decay rates after breakdown. However, these

reactions may in part be a proxy for collisions with impurities, allowing the quenching

from impurities to be taken into account (see Stefanović et al. [2014] for a discussion

on quenching due to impurities). Radiation trapping [Holstein, 1947, 1951] for the
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Ar(1s4) → Ar + ~ω transition is taken into account, following the measurements of

Han and Heaven [2014] and calculations of Belostotskiy et al. [2011].

With the exception of a few assumptions listed in the footnotes of Table 2 and

the HeAr+ neutral dissociation rates, all rate coefficients are taken directly from

the literature with no adjustment. Previous kinetic studies of Ar-He discharges have

ignored neutral dissociation of HeAr+ and no rate coefficients could be found in the

literature. However, due to the low binding energy of approximately 298 K [Dabrowski

et al., 1981], neutral dissociation rates should not be ignored, and the rate coefficients

have been estimated and included as a part of this analysis.

To estimate the HeAr++M → Ar++He+M neutral dissociation rate coefficients,

detailed balance is applied to the three-body rate coefficients (k3−body associated with

Ar+ +He+M → HeAr+ +M). Following the outline in Smirnov [1981], the steady-

state ratio of densities follows

kdiss
k3−body

=
[Ar+] [He]

[HeAr+]
=
gAr+gHe
gHeAr+

(
µkbTgas

2π~2

)3/2

exp (−D/kbTgas) , (1)

where kdiss is the rate coefficient for HeAr+ dissociation, gAr+ and gHe stand for the

statistical weights associated with the number of electronic states (assumed to be 2

to account for electron spin degeneracy), gHeAr+ is the mean number of states for the

HeAr+ ion, µ is the reduced mass of Ar+ and He, kb is the Boltzmann constant,

Tgas is the neutral gas temperature, ~ is the reduced Planck constant, and D is the

dissociation energy of HeAr+. The dissociation energy is approximately 298 K, which

is nearly equal to the room gas temperature [Dabrowski et al., 1981].

To determine gHeAr+ , the average number of rotational and vibration states must

be calculated:

gHeAr+ = gegvibgrot, (2)
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where ge = 2 is the statistical weight due to the electronic state, gvib is the mean num-

ber of vibrational states occupied, and grot provides the mean number of rotational

states occupied. The mean number of occupied vibrational states can be estimated

by

gvib ≈
∑
n

exp (−εn/kbTgas) = 1 + exp (−ε2/kbTgas) + exp (−ε3/kbTgas) , (3)

where the lowest vibrational energy state, ε1, is set to zero, and the two additional

bounded vibrational states of HeAr+, ε2 = 92.9 cm−1 and ε3 = 159.1 cm−1, are

the energies relative to ε1 [Dabrowski et al., 1981]. For a gas temperature of 300 K,

gvib ≈ 2.11.

The average rotational occupancy number is calculated by

grot =

∞∫
0

(2J + 1) exp

(
−BJ (J + 1)

kbTgas

)
=
kbTgas
B

, (4)

where J is the rotational quantum number, and B = 0.6592 cm−1 is the measured

rotational constant [Dabrowski et al., 1981].

Using a temperature of 300 K for the mean vibrational occupancy number, the

dissociation rate coefficient from Equation 1 provides

kdiss ≈ k3−body
2B

2.11kbTgas

(
µkbTgas

2π~2

)3/2

exp (−D/kbTgas) . (5)

The three-body rate coefficient for M = Ar is 2.50×10−32 cm6/s [Shon and Kushner,

1994], which provides the dissociation rate coefficient of

kHeAr++Ar→Ar++He+Ar ≈ 2.94× 10−11
√
Tgas exp (−298/Tgas) cm3/s. (6)
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Similarly, for M = He, which has a three-body rate coefficient of 1.00× 10−32 cm6/s

[Shon and Kushner, 1994], the dissociation rate coefficient is

kHeAr++He→Ar++He+He ≈ 1.17× 10−11
√
Tgas exp (−298/Tgas) cm3/s. (7)

Due to the fact that the HeAr+ dissociation energy is approximately equal to the

room temperature, the neutral dissociation rates of HeAr+ at room temperature are

large. While the three-body formation rates of HeAr+ are elevated at high pressures,

the large dissociation rates rapidly convert HeAr+ back to Ar+, effectively removing

HeAr+ from the bulk plasma.

Ambipolar Diffusion.

Ambipolar diffusion may be an important loss mechanism for gas discharges, pro-

viding an electron loss pathway which is dependent on cavity size, pressure, and

electron temperature. As a result of the difference in electron and ion mobility and

diffusion, a space charge is developed pulling the faster electrons back towards the

ions and forcing the ions to catch up to the electrons. This effect causes the elec-

trons and ions to diffuse at a combined, ambipolar rate. Following Raizer [1997], the

ambipolar diffusion coefficient, Da, can be approximated by

Da ≈ µ+Te, (8)

where µ+ is the ion mobility and Te is the electron temperature in eV.

Ion mobility is inversely proportional to the gas density, and can approximated

by a constant divided by the gas density, µ0/N . In a mixture of Ar and He, the ion

mobility will depend on the fractional composition due to the difference in mobility

between a background He gas compared to an Ar gas. The mobility of Ar+ in a
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mixture of He and Ar can be approximated using Blanc’s Law [Blanc, 1908; Biondi

and Chanin, 1961]:

1

µ+

=
1

µHe
+

1

µAr
, (9)

=
NHe

µ0,He

+
NAr

µ0,Ar

,

=⇒ µ+ =
µ0,Arµ0,He

µ0,HeNAr + µ0,ArNHe

, (10)

where µHe = µ0,He/NHe is the mobility of Ar+ in He, µAr = µ0,Ar/NAr is the mobility

of Ar+ in Ar, and µ+ is the mobility of Ar+ in a mixture of He and Ar. Ion mobilities

in He are larger than in Ar due to a difference in momentum transfer cross section

and mass, as displayed by the values of µ0 in Table 3. Following measurements by

Lindinger and Albritton [1975], the mobilities of Ar+
2 and HeAr+ are assumed to be

equal to the mobility of Ar+ in He. As a result of the relatively low densities of He+

and He+
2 in an Ar-He gas discharge, the change in He ion mobilities with respect to

gas mixture are ignored. This representation of the ion mobility allows the ambipolar

diffusion coefficient to be a function of the partial pressures of He and Ar.

Table 3. A list of ion mobilities with Ar or He as the background gas.

Ion µ0 [cm2/V · s] Source

Ar+ in Ar 1.54 Madson and Oskam [1967]
Ar+ in He 20.5 Lindinger and Albritton [1975]
Ar+

2 in Ar 1.83 Madson and Oskam [1967]
Ar+

2 in He 20.5 Assuming equal to Ar+ in He
He+ in He 10.7 Oskam and Mittelstadt [1963]
He+

2 in He 16.2 Oskam and Mittelstadt [1963]
HeAr+ in Ar 1.54 Assuming equal to Ar+ in Ar
HeAr+ in He 20.5 Assuming equal to Ar+ in He

The ion mobilities listed in Table 3 are used for the zero-dimensional simulations
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where the electric field is assumed to be uniform. An alternative form of ion mobilities

used in the one-dimensional simulations is provided by Ward [1962], which includes

the E/p dependence, where p is the gas pressure. For Ar+, the ion mobility follows

pµAr+

[
Torr · cm2/V · s

]
=


103 (1− 2.22× 10−3E/p) , if E/p ≤ 60 [V/Torr · cm]

8.25× 103√
E/p

(
1− 86.52

(E/p)3/2

)
, if E/p > 60 [V/Torr · cm] .

(11)

Similarly, the He+ mobility as a function of E/p is described by

pµHe+
[
Torr · cm2/V · s

]
=


8× 103 (1− 8.0× 10−3E/p) , if E/p ≤ 25 [V/Torr · cm]

4.1× 104√
E/p

(
1− 27.44

(E/p)3/2

)
, if E/p > 25 [V/Torr · cm] .

(12)

As the mobility is inversely proportional to the gas density, N, a temperature factor

can be added to the pressure to account for a change in gas temperature. This factor

replaces the pressure in Equations 11 and 12 with p → p × (300/Tgas), and assumes

that the measurements of Ward [1962] were taken at 300 K.

The electron lifetime, τdiff , due to ambipolar diffusion losses follows

τdiff =
Λ2

Da

, (13)

where Λ is the characteristic length of the cavity. Characteristic lengths are found by

solving the eigenvalue equation for the electron density, ne, assuming a homogeneous

ionization rate and boundary condition of ne = 0 at the cavity walls:

Da∇2ne = −νine, (14)

where νi is the ionization rate [Raizer, 1997]. In steady-state, the electron density
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remains constant, forcing the electron loss and production rates to be equal. If re-

combination is ignored, then the loss rate due to wall diffusion must be equal to the

ionization rate. The solution for a cylindrical cavity with length L and radius R is

ne = n0 J0

(
2.4 r

R

)
cos
(πz
L

)
, (15)

where n0 is the electron density at the cavity center. Substituting the solution into

Equation 14 provides

Da

[(
2.4

R

)2

+
(π
L

)2
]
ne = Da

(
1

Λ

)2

ne = νine, (16)

where the terms including the cavity dimensions are combined to calculate a charac-

teristic length, Λ [Raizer, 1997].

The ambipolar diffusion loss rate, RDa , is given by

RDa = Da∇2ne = −Da

Λ2
ne, (17)

which is equal to the electron density divided by the electron lifetime due to ambipolar

diffusion.

The importance of ambipolar diffusion on a gas discharge will depend on the

cavity geometry, pressure, and the magnitude of other electron loss mechanisms such

as recombination. Diffusion losses can be ignored for large cavities at atmospheric

pressures. However, at pressures near 100 Torr and characteristic cavity lengths on

the scale of millimeters, ambipolar diffusion plays a key kinetic role (as discussed later

in this document).
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Reduced Electric Field.

In a gas discharge, electrons gain energy from an applied electric field. The appli-

cation of a DC electric field will deposit energy into the plasma via Joule heating:

Pd = j · E = σE2 = neqeµeE
2, (18)

where Pd is the deposited power density, j is the current density, E is the electric

field, σ = neqeµe is the conductivity, and qe is the electron charge [Cherrington,

2014]. Electron mobility, µe, is given by

µe =
qe

meνm
, (19)

where me is the electron mass, and νm is the collision frequency of electrons with neu-

tral atoms. Rewriting the deposited power density in terms of the collision frequency

yields

Pd =
neq

2
e

meνm
E2. (20)

Elastic collisions between electrons and neutrals impart the fractional energy δε =

2me/M from the electrons to the neutrals with mass M . A typical gas discharge is

characterized by a non-equilibrium state where, on average, electrons possess much

more energy than neutrals. Assuming a Maxwellian distribution, the average electron

energy, 〈ε〉, follows

〈ε〉 =
3

2
kb Te. (21)

Combining this fractional energy loss with the collision frequency, the elastic power

loss per unit volume becomes

Ploss = ne νm δε
3

2
kb(Te − T ), (22)
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where Te − T is the difference between the electron temperature and the neutral gas

temperature [Cherrington, 2014].

Combining the power lost and deposited, the change in electron energy density

over time becomes

d

dt

(
3

2
nekbTe

)
= Pd − Ploss (23)

=
neq

2
e

meνm
E2 − ne νm δε

3

2
kb(Te − T ).

At steady-state, the energy does not change over time, and the electron temperature

can be described by

Te = T +
2 q2

e E
2

3 δε kb me ν2
m

. (24)

The collision frequency is a function of the neutral gas density:

νm = σmvrN (25)

where σm is the momentum transfer cross section between neutrals and electrons,

vr is the relative velocity between electrons and neutrals, and N is the neutral gas

density. This shows that the electron temperature is a function of the electric field

divided by the neutral gas density, known as the reduced electric field, E/N :

Te

(
E

N

)
= T +

2 e2

3 δε kb me σ2
m v

2
r

(
E

N

)2

. (26)

Rate coefficients for electron impact reactions are functions of E/N , and hence Te.

As a result, E/N will be the most important driver of the reaction rates throughout

this analysis.
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Similarity Parameters.

Discharges are said to be similar if they maintain equal voltages and temperatures

at equal currents for discharges in the same gas and electrode material [Von Engel,

1965]. While the geometry of the two discharges may be different, a counterbalance

scaling of the gas density (pressure) allows for certain parameters, known as similarity

parameters, to be maintained. Following Von Engel [1965] and Mesyats [2006], a

change in discharge gap lengths of d1 = ξd2 and electrode radii of r1 = ξr2 provides

the similarity parameters listed in Table 4.

Table 4. A list of similarity parameters for a change in discharge gap lengths of d1 = ξd2

and electrode radii of r1 = ξr2 [Von Engel, 1965; Mesyats, 2006].

Similarity Parameter Scaling
Voltage V1 = V2

Current i1 = i2
Temperature T1 = T2

Electrode Surface Area S1 = ξ2S2

Volume Vol1 = ξ3Vol2
Mean Free Path λ1 = ξλ2

Gas Density N1 = N2/ξ
Gas Pressure p1 = p2/ξ
Pressure-Distance Product p1d1 = p2d2

Electric Field E1 = E2/ξ
Drift Velocity λ1E1 = λ2E2

Reduced Electric Field E1/N1 = E2/N2

Surface Charge Density q1 = q2/ξ
Space Charge Density ρ1 = ρ2/ξ

2

Current Density j1 = j2/ξ
2

Collision Frequency ν1 = ν2/ξ

Processes maintaining the similarity parameter scaling are allowed, while forbid-

den processes do not maintain the proper scaling factor (see Mesyats [2006] for a

more detailed explanation). Allowed processes include: ionization at single colli-

sions, electron attachment and detachment, drift and diffusion, secondary processes

at the electrodes, charge exchange, recombination at high pressure, and penning ioniza-
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tion. Forbidden processes include: stepwise ionization, photoionization, low pressure

recombination, thermal ionization, photoelectric emission, thermionic emission and

field emission [Von Engel, 1965; Mesyats, 2006].

Similarity parameters can be used to understand the mechanisms responsible for

discharge properties and to allow for scaling due to changes in a parameter while other

parameters are held constant. Manifestations of similarity parameters are found in the

normal parameters (Equations 29 to 31), where VC , (pd)n, and jn/p
2 are constant in

a normal glow discharge. To maintain the normal parameters, the sheath thickness

follows d ∝ 1/p while the normal current density follows jn ∝ p2. This type of

relationship allows for scaling due to changes in pressure, and is important in this

analysis where pressure is varied in an attempt to maximize metastable density.

While similarity parameters are useful, care must be taken due to the forbidden

processes. For example, in a discharge where stepwise ionization is important, the

similarity parameters will not hold and should not be used for scaling.

2.2 Challenges at High Pressures

The use of gas discharges in laser development has been widely studied and im-

plemented (see Garscadden et al. [1991] for a detailed summary). Operation of gas

discharges at high pressures creates unique challenges due to non-uniform power de-

position and discharge instabilities. Excimer lasers, which operate at atmospheric

pressures, are often limited by non-uniformity and instability rather than kinetic con-

siderations [Garscadden et al., 1991]. Non-uniformities in gas mixture, electric field,

or gas density can initiate an instability which terminates laser operation. Similar to

the excimer lasers, OPRGLs operating at high pressure are prone to non-uniformities

and instabilities inherent to high pressure gas discharges.

Thermal instabilities are the “most dangerous and wide-spread instability in gas
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lasers” [Raizer, 1997]. Other types of instabilities are possible and well documented

(see Haas [1973] and Raizer [1997] for more detail), but the discharge characteristics

of this analysis are mostly prone to thermal instabilities as a result of the near-

atmospheric pressure requirement of an OPRGL system.

Due to an increase in normal current density as pressure is increased, near-

atmospheric pressure discharges are particularly prone to thermal instabilities. As

the gas temperature is increased via Joule heating (j ·E), the local gas density is de-

creased. This decrease in gas density increases the local E/N , which in turn elevates

the ionization frequency. The elevated ionization frequency creates additional current

which heats the local gas even further, rendering the discharge unstable. This insta-

bility causes the discharge to contract, transitioning to a filamentary mode [Fridman

et al., 2005].

At high pressures, efforts must be taken to reduce the potential of thermal insta-

bilities. One known method is to use pulsed DC discharges, where the down-time

between pulses allows for thermal dissipation, increasing the overall stability [Raizer,

1997]. Additionally, due to a reduction in electron temperature in between pulses,

the average densities of a pulsed system are greater than a steady-state DC discharge

[Lieberman and Lichtenberg, 2005], which is beneficial to maximizing metastable den-

sities in an OPRGL.

A related technique employs a high frequency oscillating voltage, such as in a

capacitively coupled plasma (CCP). RF-CCPs are able to maintain stability at high

pressures due to a limited ionization period occurring near the cycle peaks and an

increased energy threshold for instability formation [Raizer et al., 1995]. Instabilities

occur during periods of ionization, and the limited ionization period of RF-CCPs

reduces the likelihood of instability formation. The placement of a dielectric barrier

across one or both of the electrodes reduces the conduction current magnitude, which
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further increases stability [Fridman et al., 2005].

2.3 High Pressure Gas Discharges

This section will introduce the two types of discharges analyzed in this document:

pulsed direct current glow discharge and radio frequency capacitively coupled plasma.

As a result of the near-atmospheric pressure requirements of an OPRGL, the variety

of stable discharges is limited. While there are other forms of discharges capable of

maintaining stability at high pressures (for example: microhollow cathode discharges

and microwave resonator-driven microplasmas), this analysis will focus on pulsed

direct current discharges and radio frequency capacitively coupled plasmas.

Pulsed Direct Current Glow Discharge.

Direct current (DC) glow discharges have a structure of light emission based on

electron/ion density and energy (Figure 3). Following Raizer [1997], the qualitative

description of the light emission pattern, working left to right, follows: Electrons

emitted from the cathode due to secondary emission typically have low energies,

which cannot excite or ionize neutral atoms. Maximum secondary electron energies

follow

εmax = εion − 2εφ, (27)

where εmax is the maximum energy of a secondary electron, εion is the ionization

energy of the ion colliding with the surface, and εφ is the work function of the surface

[Lieberman and Lichtenberg, 2005]. For an Ar ion (15.76 eV) and a typical work

function of 5 eV, the maximum energy of a secondary electron is 5.76 eV, which is

too low to excite or ionize ground state Ar.

This region near the cathode is known as the Aston dark space. Acceleration of the

electrons into the cathode glow region increase the electron energy to the point where
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excitation (and hence light emission) can occur. The electrons continue to accelerate,

until they reach energies above the ionization threshold, forming the cathode dark

space, where the majority of electron impact ionization occurs.

By the end of the cathode layer, the electron flux is large and the electric field

becomes relatively small. The electrons have enough energy to excite atoms, and

electron densities are high, forming the negative glow. Due to the electron energy loss

from electron impact excitation in the negative glow, the adjacent region, called the

Faraday dark space, contains low energy electrons with infrequent excitation. The

longitudinal electric field gradually increases in the Faraday dark space, giving rise to

the positive column. Inside the positive column, the average electron energy is between

1-2 eV, but some energetic electrons are present as well. The energetic electrons excite

atoms, creating the light emission associated with the positive column. The length

of the positive column depends on the length of the tube, with the positive column

growing as the length of the tube increases. This electrically neutral, weakly ionized

plasma forms the lasing medium of many lasers [Raizer, 1997].

The behavior of the positive column can be described through a balance of elec-

tron production and loss. Without electron attachment, the steady-state electron

production and loss rates follow

Da∇2ne + νi (E/N)ne − βn2
e = 0, (28)

where β is the recombination coefficient [Raizer, 1997]. The ionization frequency’s

dependence on the reduced electric field controls the behavior of the bulk plasma by

adjusting the electron density and electric field until a steady-state is reached.

Near the anode, ions are repelled and electrons attracted, forming an overall

negative space charge. The electric field produced by the change in charge density

near the anode increases electron energies producing the anode glow.
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Figure 3. Simulated structure of a DC glow discharge using a one-dimensional fluid
model along with a qualitative description of the glow structure [Raizer, 1997]. The
cathode is on the left and the anode is on the right.
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An elevated concentration of ions and diminished concentration of electrons near

the cathode sheath in a glow discharge produces a large voltage drop named cathode

fall. The cathode fall in a normal glow discharge is characterized by the minimum

breakdown voltage in the Paschen curve, Vmin, taking place over the corresponding

pressure-distance product, (pd)min, in the sheath near the cathode (Figure 4). This

spatial constraint of the breakdown voltage over a short distance sustains the plasma

with a relatively small voltage compared to the voltage that would be required if the

voltage drop occurred over the entire length of the cavity. Secondary electrons emitted

from the cathode provide the seed electrons which are multiplied in the cathode layer,

sustaining the glow discharge with a relatively low voltage.
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Figure 4. Simulated Paschen curves (breakdown potentials) for He and Ar, using a
secondary emission coefficient of 0.01.
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The normal parameters (minimum values obtained for a normal discharge) follow

Vn =
eB

A
ln

(
1

γ
+ 1

)
, (29)

jn
p2

=
(1 + γ)4µ+ε0pV

2
n

(pd)3
n

, (30)

(pd)n =
e

A
ln

(
1

γ
+ 1

)
, (31)

where Vn is the normal cathode fall, jn is the normal current density, (pd)n is the

normal thickness-pressure product, e = 2.718 . . ., A and B are the Townsend ioniza-

tion constants, γ is the secondary emission coefficient, µ+ is the ion mobility, and ε0

is the permittivity of free space [Raizer, 1997]. The factor of 4 in the numerator of

Equation 30 is obtained from a linear field distribution in the sheath [Lieberman and

Lichtenberg, 2005], where

Vn =

d∫
0

En

(
1− x

d

)
dx =

En d

2
, (32)

=⇒ En =
2Vn
d
, (33)

and En is the electric field in the cathode sheath. Combining the relationship above

with the expression for the cathode current found in Raizer [1997], the following

relationship is obtained:

jn ≈ (1 + γ)µ+ε0
E2
n

d
≈ (1 + γ)4µ+ε0

V 2
n

d3
. (34)

For argon, A = 11.5 1/cm·Torr and B = 176.0 V/cm·Torr [Lieberman and Licht-

enberg, 2005]. A secondary emission coefficient of γ = 0.1 provides a normal cathode

fall of Vn ≈ 100 V, while a secondary emission coefficient of γ = 0.01 provides a

cathode fall of Vn ≈ 190 V.
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Radio Frequency Capacitively Coupled Plasma.

The second type of discharge analyzed in this document is the radio frequency

capacitively coupled plasma (RF-CCP), which uses voltages oscillating at radio fre-

quencies to produce a plasma. Due to the time varying potential, dielectrics can be

placed over the electrodes while maintaining current flow due to the displacement

current. This dielectric barrier discharge (DBD) allows for stable plasma formation

at high pressures.

A simple one-dimensional model for an RF-CCP, as described by Raizer [1997],

follows

∂ρ

∂t
= −∂jc

∂x
, (35)

∂E

∂x
=

ρ

ε0
, (36)

jc = σeE, (37)

jc + ε0
∂E

∂t
= jc + jdis = j (t) , (38)

where ρ is the space charge density, jc is the conduction current density, jdis is the

displacement current density, and j (t) is the total current density, which is indepen-

dent of position. In the case of an insulated electrode (dielectric barrier) circuit, the

equivalent circuit can be thought of as a capacitance of dielectrics, Cd, in series with

a parallel plasma resistance, R, and capacitance, C.

As a conduction current is produced in the plasma, charge is carried and attached

to the dielectric surface (Figure 5). This collection of charge on the surface effectively

reduces the applied voltage from the electrodes. For a surface charge density, q, on
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the electrode and qc on the dielectric surface, the electric fields follow

Ed =
q

εd
, (39)

ε0E − εdEd = −qc, (40)

where εd is the dielectric permittivity, Ed is the electric field in the dielectric, and

E is the electric field in the plasma. The time rate of change of the surface charges

depend on the current:

q̇c = jc, (41)

q̇ =
i

S
= j, (42)

where i is the current into the electrodes and S is the electrode area.
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Figure 5. A cross section of the discharge chamber in an insulated electrode (dielectric
barrier) RF-CCP [Raizer, 1997].

Ignoring the voltage drops across the sheaths, the total voltage drop across the
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electrodes becomes

V = 2Edl + EL, (43)

where l is the length of the dielectric, and L is the distance between the dielectrics.

Converting the fields to surface charge densities, the voltage and currents become

V =
2l

εd
q +

jcL

σe
, (44)

jc =
σe
ε0

(q − qc) . (45)

Rewriting the expressions again, using charges Q = qS and Qc = qcS along with

current ic = jcS, the more familiar forms of the voltage and currents appear:

V =
2Q

Cd
+ icR, (46)

Vb = icR =
Q−Qc

C
, (47)

Q̇c = ic, (48)

Q̇ = i, (49)

where Cd = εdS/l, C = ε0S/L, R = L/σeS, and Vb is the voltage across the bulk

plasma.

For an applied electrode voltage of V (t) = Va sinωt, Equations 46 to 49 can be

integrated to obtain the following expression for the voltage across the bulk plasma

as a function of time [Raizer, 1997]:

Vb =
Va sin (ωt+ φ)

1 + 2C/Cd

ωτ√
1 + ω2τ 2

, (50)

τ = R (Cd/2 + C) , (51)

φ = arctan (ωt) . (52)
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The conductivity follows

σe =
q2
eneνm

me (ω2 + ν2
m)
, (53)

where νm is the collision frequency of electrons and neutrals and ω is the voltage

driving frequency. As the electron density increases, the conductivity increases, which

decreases the plasma resistance, R. This decrease in R decreases the voltage across

the bulk plasma.

Sheath behavior gives rise to two distinct modes of operation in an RF-CCP:

the α and γ-modes. The α-mode corresponds to a low-current, low-voltage mode

of operation, where ionization occurs over the plasma as a whole. Similar to the

transition to a glow discharge in a DC scenario, the transition from α to γ-mode

occurs when the voltage and sheath thickness are sufficient to cause a breakdown in

the sheath. Once this breakdown occurs, the plasma is able to produce large currents

without a further increase in voltage. Also comparable to the DC glow discharge,

secondary electron emission is required to provide the seed electrons necessary for

sustaining ionization in the sheaths of a γ-mode.

Including the drop in voltage due to sheath formation, the voltage across the bulk

plasma follows

V 2
b = V 2

app − (Vs + Vd)
2, (54)

where Vapp is the applied voltage, Vs is the potential drop in the sheaths, and Vd is

the voltage drop due to charge collection at the dielectrics [Raizer et al., 1995]. The

voltage drop due to charge collection on the dielectric surface follows

Vd =
2δj

εdω
, (55)

where δ is the thickness of the dielectrics, and j is the current density. In an α-mode,
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the sheath voltage follows

Vs =
dαj

ωε0
, (56)

where dα is the sheath thickness. The sheath thickness can be estimated from the

amplitude of sheath oscillation, A, by numerically solving

A2
[(
ω2 − ω2

p2A/de
)2

+ ω2ν2
m

]
=

(
qeVapp
mede

)2

, (57)

where ωp is the plasma frequency, and νm is the electron collision frequency [Raizer

et al., 1995]. While the sheath thickness varies over time with the applied voltage,

the peak thickness can be estimated as dα = 2A [Raizer et al., 1995]. The effective

distance between electrodes, de, accounts for the electric field increase due to the

dielectric barrier:

de = d− 2δ

(
1− ε0

εd

)
, (58)

where d is the actual distance between the electrodes.

2.4 Computational Aspects of Gas Discharge Simulations

In this section, the computational aspects of the models used in the analysis

are introduced, beginning with a Boltzmann equation solver, BOLSIG+. BOLSIG+

provides the electronic energy distribution function required to calculate electron

impact rate coefficients and electron transport parameters in the kinetic and fluid

models. The zero-dimensional plasma kinetics model, ZDPlasKin, provides a method

for simulating bulk plasma kinetics over time. One-dimensional spatial profiles are

calculated using a fluid model, which is appropriate for modeling the bulk plasma of

high pressure gas discharges.
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Boltzmann Equation Solver.

A Boltzmann equation solver, BOLSIG+, is used to calculate electron energy

distribution functions (EEDFs), electron impact rate coefficients, and electron trans-

port parameters for the zero-dimensional kinetic model and the one-dimensional fluid

model. EEDFs are calculated from the Boltzmann Equation,

∂f

∂t
+ v · ∇f − qe

me

E · ∇vf = C[f ] (59)

using a two-term approximation,

f(v, cos θ, x, t) = f0(v, x, t) + f1(v, x, t) cos θ (60)

where f is the EEDF, E is the electric field, C[f ] is the rate of change of f due to

collisions, and θ is the angle between v and E [Hagelaar and Pitchford, 2005]. The col-

lision term, C[f ], requires electron impact cross sections, which can be found from the

LXcat database (http://nl.lxcat.net/). With the two-term approximation, the sepa-

ration of energy and space/time, and the assumption of either exponential temporal

or spatial growth, a convection-diffusion continuity equation in energy space arises

for the EEDF. After discretization of the collision terms, this convection-diffusion

equation is solved numerically using a finite volume scheme developed by Scharfetter

and Gummel [1969].

Rate coefficients for electron impact collisions are calculated from the EEDF by

ki =

√
2qe
me

∫ ∞
0

εσi(ε)F (ε) dε, (61)

where ki is the rate coefficient for the ith reaction, ε is the electron energy, σi is the

cross section for the ith reaction as a function of energy, and F (ε) is the energy compo-
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nent of the EEDF. The overlap between the EEDF and the cross section provide the

rate coefficient, which is graphically displayed in Figure 6. As the E/N increases, the

energetic tail of the EEDF becomes more populated, increasing the overlap between

the EEDF and cross section, which raises the rate coefficient.
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Figure 6. Electron Energy Distribution Function calculated by BOLSIG+ for 3%
argon in helium at a variety of E/N magnitudes. The cross sections displayed are for
excitation to Ar(1s5) [Biagi, 2011] and ionization [Yamabe et al., 1983] from the ground
state.

Calculated EEDFs are also dependent on the gas composition, as displayed in

Figure 7. For a given E/N , the EEDF tail population grows as the fraction of He

increases (Ar-fraction decreases). The He rich mixtures push the EEDF towards

a Maxwellian distribution, thus increasing the ionization and excitation rates for a

particular E/N . This dependence on gas composition is due to a difference in exci-

tation/ionization energy thresholds and momentum transfer cross sections. Inelastic

collisions in Ar occur for electron energies above 11.55 eV, while He requires a mini-

mum energy of 19.80 eV. The energy loss from inelastic collisions for Ar rich mixtures

causes a sharp decline in EEDF population for energies above the 11.55 eV threshold
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(Figure 7). This reduction near the Ar excitation energy threshold becomes less se-

vere as more He is added to the mixture due to a diminution in inelastic energy loss

to Ar excitation and ionization.

0 5 10 15 20
Energy [eV]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
E
E
D
F 

[e
V
−3

/2
]

0% Ar

10% Ar

20% Ar

30% Ar

40% Ar

50% Ar

60% Ar

70% Ar

80% Ar

90% Ar

Maxwellian

Ar(1s5) Excitation

Ar Ionization

Figure 7. Electron Energy Distribution Functions calculated by BOLSIG+ for a vari-
able composition of Ar in He at an E/N of 5 Td.

In addition to the loss in energetic electrons from inelastic collisions, the He EEDF

has a larger population of energetic electrons as a result of a smaller momentum

transfer cross section. A reduction in the momentum transfer cross section allows

for more acceleration by the electric field. As displayed in Figure 8, Ar has a larger

momentum transfer cross section than He for energies above 5 eV, which decreases

the population of energetic electrons as the Ar-fraction increases. The Ar momentum

transfer cross section shows a strong dependence on energy and is approximately

a factor of 3 larger than the cross section for He at 10 eV, near the peak of the

momentum transfer cross section in Ar. A static polarizability of 1.6 Å3 for Ar [Roos

et al., 2004] compared to 0.2 Å3 for He [ Lach et al., 2004] may account for the large

difference in momentum transfer cross sections. Calculation of the Langevin cross
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sections for the two atoms based on the polarizability [Steinfeld et al., 1999] provides

a factor of 3 increase in the cross section for Ar relative to He. The factor of 8 increase

in polarizability causes a factor of 3 increase in the momentum transfer cross section,

matching the ratio of experimental derived cross sections at 10 eV.
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Figure 8. Momentum transfer cross sections for Ar [Yamabe et al., 1983] and He
[Crompton et al., 1967] as a function of electron energy.

BOLSIG+ also calculates transport coefficients, elastic/inelastic power loss, and

a variety of additional parameters dependent on the EEDF, as outlined in Section

2.4. A comparison of BOLSIG+ calculated parameters to experimental measurements

indicate close agreement for a wide range of E/N magnitudes [Pitchford et al., 2013].

Electron mobilities are in agreement for E/N magnitudes up to approximately 100

Td, and ionization/excitation rate coefficients match the measurements up to ∼ 500

Td.

Combining BOLSIG+ with a rate equation integrator, such as ZDPlasKin, allows

for a zero-dimensional analysis of a plasma discharge. Alternatively, BOLSIG+ can

be pre-run for a range of electron temperatures, providing look-up tables of electron
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impact rate coefficients and transport parameters to be used in fluid model calcula-

tions.

Zero-Dimensional Plasma Kinetics Model.

After electron impact rate coefficients are calculated by BOLSIG+, a system of

reaction rate equations can be developed by combining the electron impact reactions

with the remaining reactions (radiative, two-heavy-body, etc.), where the rate co-

efficients are extracted from literature. A zero-dimensional approach to the plasma

kinetics is provided by ZDPlasKin (Zero-Dimensional Plasma Kinetics), which models

the bulk plasma of a gas discharge by numerically integrating the system of reaction

rate equations over time [Pancheshnyi et al., 2008].

For reactions of the form

aA+ bB → a′A+ cC [+∆ε], (62)

the system of rate equations integrated over time are described by

d[Nl]

dt
=

imax∑
i=1

Qli(t), (63)

QAi = (a′ − a)Ri,

QBi = −bRi,

QCi = cRi,

Ri = ki[A]a[B]b,

where [Nl] is the concentration of species l = A,B, or C, i is the reaction number,

a, b, c are the stoichiometric coefficients of the species A,B,C in reaction i, Ri is the

reaction rate for reaction i with rate coefficient ki, Qli is the overall production/loss
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rate for species l due to reaction i, and ∆ε is the energy gained or lost in the reaction

[Pancheshnyi et al., 2008].

In addition to the reaction rates, ZDPlasKin can also calculate gas heating based

on inelastic and elastic power loss from BOLSIG+:

Ngas

γc − 1

dTgas
dt

=
imax∑
i=1

±∆εi ·Ri + Pelast · [ne], (64)

where γc is the ratio of specific heats, ∆εi is the inelastic energy loss/gain due to

reaction i, and Pelast is the elastic power loss due to momentum transfer collisions.

ZDPlasKin uses DVODE to integrate the system of rate equations over time (see

Brown et al. 1989 for details). The rate coefficients for each reaction are input, and

the electron impact rate coefficients are calculated using BOLSIG+. As the model

progresses in time, BOLSIG+ is called to update the electron impact rate coefficients

when the densities or E/N change beyond some user defined threshold.

Due to the electron impact rate coefficient dependence on E/N , the bulk plasma

E/N must be calculated at each time step to provide an input to BOLSIG+. A

simple method for calculating the E/N over time due to a voltage drop across a

ballast resistor is described in Eismann [2011], and is used as a basis for this analysis.

Pathway Reduction Method for Plasma Kinetic Models.

An analysis of the reaction rate magnitudes over time, as calculated by ZDPlasKin,

is helpful to understand the dominant production and loss rates. However, rates

by themselves do not provide information on the pathways (sequences of reactions)

creating or destroying species of interest. To analyze the principal pathways, a model

such as PumpKin (Pathway redUction Method for Plasma KINetic models) must be

employed [Markosyan et al., 2014]. The PumpKin algorithm is based on the algorithm

described by Lehmann [2004], which can be summarized by the following steps:
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• Each reaction is the starting point for a pathway.

• Branching point (fast species, Si, with τi = c̄i/di < τthreshold where τ is the

species lifetime defined by the average concentration, c̄, divided by the destruc-

tion rate, d) is selected as the species with the shortest lifetime relative to the

present list of pathways.

• Pathways producing Si are combined with pathways that consume it.

• Pathways with small rates (fk < fmin) are eliminated.

• Process repeated with next branching point until no species with τi < τthreshold

remain.

The use of PumpKin allows the key pathways to be determined, which links together

a series of key reactions resulting in a clear picture of the kinetics.

One-Dimensional Fluid Model.

Fluid Equations.

While a zero-dimensional model is helpful to understand chemical kinetics, it is not

able to model the spatial profile of densities, voltages, or energies that can be obtained

using a one-dimensional model. Understanding the spatial structure of metastable

densities is key to this analysis due to the OPRGL requirement of elevated metastable

densities over a volume large enough to allow efficient coupling of the pump laser.

One common approach to include dimensionality in a gas discharge model is through

the use of the fluid approximations to the Boltzmann equation [Lymberopoulos and

Economou, 1993; Boeuf and Pitchford, 1995; Farouk et al., 2006; Gogolides and Sawin,

1992; COMSOL, 2016]. The fluid approach allows for high pressure simulations with

low computation time compared to particle-in-cell approaches.
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The fluid equations are derived from the Boltzmann equation with the assumption

that the plasma acts as a conducting fluid instead of individual particles. This ap-

proximation is justified when the mean free path is much less than the scale of change

of the macroscopic quantities and when the distance between particles is much less

than the characteristic distance due to Debye shielding. In other words,

Nλ3
D � 1, (65)

λD =

√
Teε0
qene

, (66)

where λD is the Debye length [Cherrington, 2014]. For a 100 Torr discharge with

Te = 2 eV and ne = 1017 m−3, the gas density is approximately 3× 1024 m−3 and the

Debye length is approximately 3× 10−5 m, which meets the criteria for using a fluid

approximation.

Following the derivation of the drift-diffusion equations found in Hagelaar and

Pitchford [2005] and Raizer [1997], the two-term approximation to the Boltzmann

equation (Equation 59) using spherical coordinates in velocity while only allowing

the EEDF to spatially vary in the direction of the applied electric field provides:

∂

∂t
[f0(v, x, t) + f1(v, x, t) cos θ] + v cos θ

∂

∂x
[f0(v, x, t) + f1(v, x, t) cos θ]

− qe
me

E

(
cos θ

∂

∂v
[f0(v, x, t) + f1(v, x, t) cos θ] +

sin2 θ

v

∂

∂ cos θ
[f0(v, x, t) + f1(v, x, t) cos θ]

)
= C[f0(v, x, t) + f1(v, x, t) cos θ]. (67)
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Averaging over the angular dependence yields

1

4π

∫
∂

∂t
[f0 + f1 cos θ] dΩ +

1

4π

∫
v cos θ

∂

∂x
[f0 + f1 cos θ] dΩ

− 1

4π

∫
qe
me

E

(
cos θ

∂

∂v
[f0 + f1 cos θ] +

sin2 θ

v
f1

)
dΩ =

1

4π

∫
C[f0 + f1 cos θ] dΩ,

=⇒ ∂f0

∂t
+
v

3

∂f1

∂x
− qe

3me

E

(
∂f1

∂v
+

2

v
f1

)
= C0,

=⇒ ∂f0

∂t
+
v

3

∂f1

∂x
− qe

3mev2
E
∂

∂v

(
f1v

2
)

= C0, (68)

where dΩ = sin θ dθ dφ, and the integral of C[f ] has been replaced by C0. More detail

on the specifics of the collision term can be found in Hagelaar and Pitchford [2005].

The velocity dependence can be converted to energy by

1

2
mev

2 = qeε =⇒ mev dv = qe dε, (69)

=⇒ dv =

√
qe

2meε
dε,

where ε is the electron energy in eV. Substituting into Equation 68 provides

∂f0

∂t
+

1

3

√
2qeε

me

∂f1

∂x
− E

3

√
2qe
meε

∂

∂ε
(f1ε) = C0. (70)

Following a similar procedure of multiplying Equation 67 by cos θ and averaging

over the angular dependence produces the complementary equation

∂f1

∂t
+

√
2qeε

me

∂f0

∂x
− E

√
2qeε

me

∂f0

∂ε
= −Nσm

√
2qeε

me

f1, (71)

where the term on the right hand side is due to the angular integral of the collision

term (see Raizer [1997] for a detailed derivation).

The electron continuity equation is obtained by multiplying Equation 70 by
√
ε
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and integrating over energy:

∞∫
0

∂f0

∂t

√
ε dε+

1

3

√
2qe
me

∞∫
0

ε
∂f1

∂x
dε− E

3

√
2qe
me

∞∫
0

∂

∂ε
(f1ε) dε =

∞∫
0

C0

√
ε dε. (72)

Using the normalization condition

∞∫
0

f0

√
ε dε =

1

2π

(
me

2qe

)3/2

ne, (73)

along with the fact that f1ε goes to zero as ε goes to zero or infinity, provides the

electron continuity equation:

∂ne
∂t

+
∂Γe
∂x

= Re. (74)

The electron source term, Re, is the total electron production/loss rate. The flux

term, Γe, is described by

Γe =
2π

3

(
2qe
me

)2
∞∫

0

εf1 dε. (75)

Solving for f1 in Equation 71 yields

−f1

(
σm +

ν̄i
N

√
me

2qeε

)
=

1

N

∂f0

∂x
− E

N

∂f0

∂ε
, (76)

where the time derivative of f1 is replaced by the net ionization frequency, ν̄i, times

f1:

∂f1

∂t
= f1ν̄i. (77)

Defining the effective momentum transfer cross section, σ̃m, as

σ̃m = σm +
ν̄i
N

√
me

2qeε
, (78)
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provides

f1 = − 1

Nσ̃m

∂f0

∂x
+

E

Nσ̃m

∂f0

∂ε
. (79)

Substituting f1 into Equation 75 produces

Γe = − 2π

3N

(
2qe
me

)2
∂

∂x

∞∫
0

ε

σ̃m
f0 dε+

2πE

3N

(
2qe
me

)2
∞∫

0

ε

σ̃m

∂f0

∂ε
dε. (80)

Defining the electron mobility, µe, and electron diffusion coefficient, De, as

Dene =
2π

3N

(
2qe
me

)2
∞∫

0

ε

σ̃m
f0 dε, (81)

µene = − 2π

3N

(
2qe
me

)2
∞∫

0

ε

σ̃m

∂f0

∂ε
dε, (82)

yields the drift-diffusion equation:

Γe = −∂ (Dene)

∂x
− µeneE. (83)

A similar derivation provides the energy transport equation, which is obtained by

multiplying Equation 70 by ε3/2 and integrating over energy:

∞∫
0

∂f0

∂t
ε3/2 dε+

1

3

√
2qe
me

∞∫
0

ε2
∂f1

∂x
dε− E

3

∞∫
0

√
2qe
me

ε
∂

∂ε
(f1ε) dε =

∞∫
0

C0ε
3/2 dε. (84)

Using the normalization condition

∞∫
0

f0 ε
3/2 dε =

1

2π

(
me

2qe

)3/2

ne〈ε〉 =
1

2π

(
me

2qe

)3/2

nε, (85)

where nε is the electron energy density and 〈ε〉 is the mean electron energy in eV,
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yields the energy transport equation:

∂nε
∂t

+
∂Γε
∂x

+ EΓe = Rε. (86)

The electron energy source term, Rε, is the change in energy due to electron collisions.

The flux term, Γε, is described by

Γε =
2π

3

(
2qe
me

)2
∞∫

0

ε2f1 dε, (87)

which can be converted to the drift-diffusion form by defining

Dεnε =
2π

3N〈ε〉

(
2qe
me

)2
∞∫

0

ε2

σ̃m
f0 dε, (88)

µεnε = − 2π

3N〈ε〉

(
2qe
me

)2
∞∫

0

ε2

σ̃m

∂f0

∂ε
dε. (89)

The definitions of the electron energy mobility, µε, and the electron energy diffusion

coefficient, Dε, provide the electron energy flux in the drift-diffusion form:

Γε = −∂ (Dεnε)

∂x
− µεnεE. (90)

While the two-term approximation assumes a spatially uniform E/N and is known

to fail at large E/N magnitudes [Raizer, 1997; Hagelaar and Pitchford, 2005], the

approach is appropriate in the bulk plasma (positive column), which is the region

of interest for an OPRGL. To properly model sheath behavior, where the E/N is

non-uniform and large in magnitude, a hybrid fluid-kinetic approach should be im-

plemented [Fiala et al., 1994; Boeuf and Pitchford, 2004; Derzsi et al., 2009].

46



www.manaraa.com

Ignoring neutral gas flow, heavy particle transport is calculated by

∂nk
∂t

+
∂Γk
∂x

= Rk, (91)

∂np
∂t

+
∂Γp
∂x

= Rp, (92)

Γk = −Dk
∂nk
∂x

, (93)

Γp = npµpE −Dp
∂np
∂x

, (94)

where nk is the density of neutral species k, np is the density of ion species p, Dk,p

are the diffusion coefficients (assumed to be independent of position), Rk,p are the

reaction source terms, and µp is the ion mobility. The ion flux Γp has a drift term

due to migration in the electric field, E = −∂V/∂x. Electric potentials are calculated

from Poisson’s equation

−∂
2V

∂x2
=
qe
ε0

(
P∑
p=1

np − ne

)
, (95)

where all ions are assumed to be singly charged with charge qe.

Near the electrodes, electrons are lost due to thermal motion to the surface, and

electrons are created due to secondary emission from ion collisions with the surface,

providing the following boundary conditions [Hagelaar et al., 2000]:

n · Γe =
1

2
ve,thne − ξ

∑
p

γpΓp · n, (96)

n · Γε =
5

6
ve,thnε − ξ

∑
p

εpγpΓp · n, (97)

ξ =


1, if Γp · n > 0

0, otherwise
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where n is the outward normal vector to the boundary (electrode), ve,th is the thermal

velocity of electrons, εp is the average energy of the secondary electrons, and γp is

the secondary emission coefficient for ion species p. Boundary conditions for heavy

species follow

n · Γk =
1

2
vk,thnk, (98)

n · Γp =
1

2
vp,thnp + npµpE · n, (99)

where the sticking coefficient is assumed to be unity, and vk,th and vp,th are the thermal

neutral and ion velocities, respectively.

Numerical Approach.

Solutions to the system of partial differential equations may be approximated

using the Galerkin finite element method, or through the Scharfetter and Gummel

[1969] finite volume scheme. At high pressures, the Scharfetter-Gummel scheme is

commonly used to conserve flux between cells [Kushner, 2005; Boeuf and Pitchford,

2004], eliminating instabilities which may arise using the finite element approach.
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Figure 9. A diagram of the grid and midpoint flux used in the Scharfetter-Gummel
finite volume scheme.

This finite volume scheme conserves flux, Γ, between points in space by using

an average flux at the midpoints (Figure 9). Assuming the flux is constant over an
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interval, but the densities and diffusion coefficients are variable, the midpoint flux

can be derived by [Frensley, 2004]

Γi+1/2 = − ∂

∂x
(Dene)− neµeE,

=⇒ Γi+1/2 exp [µeE(x− xi)/De] =

(
− ∂

∂x
(Dene)− neµeE

)
exp [µeE(x− xi)/De] ,

= − ∂

∂x
(Dene exp [µeE(x− xi)/De]) , (100)

where i is the spatial index and the temporal index has been ignored to provide a

clear derivation of the midpoint flux. Integrating over the length of a cell provides

xi+∆xi∫
xi

Γi+1/2 exp [µeE(x− xi)/De] dx =

xi+∆xi∫
xi

− ∂

∂x
(Dene exp [µeE(x− xi)/De]) dx,

=⇒ Γi+1/2

∆xi∫
0

exp [µeEx
′/De] dx

′ = − (Dene exp [µeE(x− xi)/De])
∣∣∣xi+∆xi

xi
,

=⇒ Γi+1/2

(
De

µeE

)
i+1/2

(
exp

[
(µeE/De)i+1/2 ∆xi

]
− 1
)

= (Dene)i − (Dene)i+1 exp
[
(µeE/De)i+1/2 ∆xi

]
. (101)

Solving for the midpoint flux yields

Γi+1/2 =

(
µeE

De

)
i+1/2

(Dene)i − (Dene)i+1 exp
[
(µeE/De)i+1/2 ∆xi

]
exp

[
(µeE/De)i+1/2 ∆xi

]
− 1

,

=

(
µeE

De

)
i+1/2

(Dene)i exp
[
(−µeE/De)i+1/2 ∆xi

]
− (Dene)i+1

1− exp
[
(−µeE/De)i+1/2 ∆xi

] . (102)
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Applying the scheme to the electron continuity equation provides

nk+1
e,i − nke,i

∆t
+

Γk+1
i+1/2 − Γk+1

i−1/2

∆xi
= Rk

i , (103)

Γk+1
i+1/2 =

(
µeE

De

)k
i+1/2

−Dk
e,i+1n

k+1
e,i+1 +Dk

e,in
k+1
e,i exp

(
− (µeE/De)

k
i+1/2 ∆xi

)
1− exp

[
− (µeE/De)

k
i+1/2 ∆xi

] , (104)

Γk+1
i−1/2 =

(
µeE

De

)k
i−1/2

−Dk
e,in

k+1
e,i +Dk

e,i−1n
k+1
e,i−1 exp

(
− (µeE/De)

k
i−1/2 ∆xi

)
1− exp

[
− (µeE/De)

k
i−1/2 ∆xi

] , (105)

where k is the temporal index [Passchier and Goedheer, 1993; Fiala et al., 1994].

The boundary conditions are described by Equation 96. A forward Euler method is

used for the time-stepping, which is a first order explicit scheme in time. Voltages,

diffusion coefficients, and mobilities from the previous time step are used to linearize

the spatial component. The electron energy continuity equation is solved in the same

manner. Following a similar derivation for the neutral species, without the drift term,

µeE, provides a centered-difference scheme, which is second order in space.

For Dirichlet boundary conditions (DC scenario), a Green’s function approach

may be used to calculate the voltage:

V (x) =

x∫
0

x′

d
(d− x)

ρ(x′)

ε0
dx′ +

d∫
x

x

(
1− x′

d

)
ρ(x′)

ε0
dx′ − V (0)

(x
d
− 1
)

+ V (d)
x

d
.

(106)

Alternatively, for the RF-CCP scenario which provides Neumann boundary conditions

at the dielectric interface, a central difference finite difference scheme may be used to

solve Poisson’s equation.

Electron mobilities, µe,ε, diffusion coefficients, De,ε, and electron impact rate co-

efficients are calculated from BOLSIG+, and a look-up table is used to extract the

values based on the local Te. The local electron temperature is mapped to an ef-
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fective E/N from BOLSIG+, which is used to extract an EEDF for each point in

space. Transport parameters and electron impact rate coefficients are calculated for

each point in space from the EEDF corresponding to the local Te. Reaction source

terms are calculated from the plasma chemistry in the same manner as Equation 63,

with the addition of an energy term, ∆εi, in the energy source term, Rε, to account

for the energy gained or lost from reaction i.
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III. Pulsed Circuit Direct Current Discharge

An optically pumped rare gas laser (OPRGL), as demonstrated by Han et al.

[2013], uses a diode laser to pump metastable Rg(1s5) atoms generated in a gas

discharge to the Rg(2p9) level. At atmospheric pressures, rapid collisional transfer

from Rg(2p9) to Rg(2p10) allows for a population inversion and subsequent lasing to

Rg(1s5), as displayed in Figure 1. Diode laser absorption, and hence optical gain,

are dependent on Rg(1s5) densities [Rawlins et al., 2015; Demyanov et al., 2013].

Output laser intensities above 100 W/cm2 may be possible with a uniform volume

of metastable densities on the order of 1013 cm−3 [Han et al., 2014]. Due to the

broad line widths of diode lasers, near-atmospheric pressures are required to broaden

the absorption line width for efficient pump laser absorption. Additionally, the non-

adiabatic transition rate from Rg(2p9) to Rg(2p10), responsible for establishing a

population inversion, is enhanced at elevated pressures. Pulsed discharges are able to

maintain stability at atmospheric pressures due to a reduction in thermal instabilities

caused by the down time in-between pulses [Raizer, 1997]. Additionally, for the

same averaged power, the average plasma density of a pulsed system is greater than

a steady-state direct current (DC) discharge as a result of a reduction in electron

temperature in-between pulses [Ashida et al., 1995; Lieberman and Lichtenberg, 2005].

Han et al. [2013] demonstrated the use of a pulsed DC circuit to produce an

OPRGL in an Ar-He mixture at atmospheric pressures. Voltages in the range of 1000-

2000 V were used for microsecond pulses across a parallel plate geometry. Metastable

densities, measured through pump laser absorption, indicated a decay to half the

peak value approximately 7 µs after pulse initiation.

Previously, a kinetic study of an OPRGL using a mixture of Ar and He at atmo-

spheric pressures concluded that a mixture of approximately 1% Ar in He results in

the largest total efficiency (defined as the output power divided by the sum of dis-
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charge and pump powers) [Demyanov et al., 2013]. The kinetic study observed that

an increase in Ar-fraction increases production of Ar(1s5), but also results in a larger

collision relaxation rate from the Ar(2p) manifold down to the Ar(1s) manifold in ad-

dition to an increase in the Ar(1s5) loss rate through excimer formation. A separate

kinetic analysis studied OPRGL performance over a variety of metastable densities,

showing the possibility of kilowatt laser powers for an OPRGL system with Ar(1s5)

densities on the order of 1013 cm−3 and pump laser intensities in the 2-5 kW/cm2

range [Yang et al., 2015]. An experimental and computational analysis of microwave

resonator-driven microplasmas at a variety of Ar-He mixtures and pressures ranging

from 100-730 Torr found that an Ar-fraction near 5% at a pressure of 100 Torr pro-

duces the largest metastable densities [Hoskinson et al., 2016]. Metastable densities

on the order of 1013 cm−3 were measured for the microplasmas at a pressure of 100

Torr, with a decrease in Ar(1s5) density as the pressure increased.

More recently, Han et al. [2016] performed an Ar-He pulsed DC discharge ex-

periment at a pressure of 270 Torr and a mixture of 7% Ar in He, with 2.5 cm ×

2.5 cm stainless steel electrodes separated by 0.5 cm. Metastable Ar(1s5) densities

were measured via transient laser absorption spectroscopy from a custom made diode

laser tuned to the Ar(1s5) + ~ω → Ar(2p9) transition. Plasma fluorescence from

the Ar(2p10) → Ar(1s5) + ~ω transition was also measured, providing a proxy for

Ar(2p10) density over time.

This chapter analyzes the pulsed circuit experiment described in Han et al. [2016].

A zero-dimensional analysis is used to vet the reaction rate package and perform

a sensitivity analysis. Simulations are then extended to one-dimension providing

spatial metastable density profiles and verifying the positive column predictions of the

zero-dimensional approach. Additionally, EEDF calculations for the one-dimensional

model are varied over the pulse duration to test the effectiveness of using a single set
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of pre-calculated EEDFs.

3.1 Description of Experiment

A recent experiment performed by Han et al. [2016] using a pulsed DC discharge

with mixtures of Ar and He at atmospheric pressures has demonstrated the ability to

produce high concentrations of Ar(1s5) over a relatively large volume. A diagram of

the experimental design is displayed in Figure 10. Pulsed voltages of approximately

1000 V were applied across stainless steel electrodes with dimensions 2.5 cm × 2.5

cm, separated by 0.5 cm.

Metastable densities were measured via transient laser absorption spectroscopy

from a custom made diode laser tuned to the Ar(1s5) + ~ω → Ar(2p9) transition

(811.754 nm), providing a proxy for the Ar(1s5) densities over the pulse duration.

Plasma fluorescence from the Ar(2p10)→ Ar(1s5)+~ω transition was measured from

the side of the cell perpendicular to the diode laser propagation, providing a proxy

for the time-dependent Ar(2p10) densities.
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Figure 10. A diagram of the experimental apparatus used for measurement of the
pulsed DC discharge [Han et al., 2016].
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In addition to the density measurements, several voltages and currents were mea-

sured for the pulsed circuit (Figure 10). A high voltage pulse generator was used to

produce square wave (single or multiple) pulses amplified to around 1000 V. A 500

Ω ballast resistor (R2) was used to limit the current, and a 0.5 Ω resistor (R3) was

used to measure the discharge current. Voltages were measured in several locations

to provide detailed information about the temporal variations of the circuit, includ-

ing a measurement of the voltage across the electrodes (V2 − V3 ≈ V2). A digital

oscilloscope was also connected directly to the pulse generator to measure the output

voltage, Vmon.

The combination of measurements, including voltage across the electrodes, dis-

charge current, metastable absorption, and Ar(2p10) fluorescence, provide a detailed

picture of the time dependent plasma dynamics during a high voltage pulse.

3.2 Zero-Dimensional Simulations

A zero-dimensional analysis of the pulsed circuit discharge is performed using the

rate package in Table 2. While several pressures and Ar-He mixtures were measured

experimentally, the simulations focus on the 270 Torr, 7% Ar in He scenario, and

investigate various pulse durations. Gas heating is ignored due to the short pulse

duration.

Voltages across the positive column are calculated by

VPC = Vmon − IDR2 − VC , (107)

where VPC is the voltage across the positive column, ID is the discharge current,

and VC is the cathode fall. Measured voltages from the pulse generator, Vmon, are

smoothed and used as the input voltage for zero-dimensional plasma kinetics model,
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ZDPlasKin. ZDPlasKin uses the input voltage to calculate the voltage across the

positive column by including the potential drop across the ballast resistor and the

cathode fall. The cathode fall is calculated using Equation 29, with the assumption

that the discharge is a normal glow. For a secondary emission coefficient of γ = 0.02

estimated for stainless steel, the calculated normal cathode fall is around 160 V.

The main driver of the EEDF (and hence reaction rates) is the reduced electric

field, E/N . The E/N for time k + 1 is calculated from the current and E/N at time

k following the procedure outlined in Eismann [2011]:

V k+1
PC = V k+1

mon − VC −R2I
k
D, (108)

= V k+1
mon − VC −R2Aj

k, (109)

= V k+1
mon − VC −R2An

k
eqeµ

k
eN

(
E

N

)k+1

, (110)

where the E/N for the current density is selected at time k + 1 to make the process

semi-implicit. Substituting

E

N
=
VPC
Nd

=⇒ VPC = Nd

(
E

N

)
, (111)

where d is the distance between electrodes, we obtain

Nd

(
E

N

)k+1

= V k+1
mon − VC −R2An

k
eqeµ

k
eN

(
E

N

)k+1

, (112)

=⇒
(
E

N

)k+1

=
V k+1
mon − VC

N (d+R2Ankeqeµ
k
e)
. (113)

Using the relationship neqeµe = j/E provides the desired form of E/N at time k+ 1:

(
E

N

)k+1

=
V k+1
mon − VC

Nd+
R2I

k
D

(E/N)k

. (114)
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To compare simulated voltages to measured electrode voltages, the electrode volt-

age, VE, is calculated:

VE = VPC + VC = Vmon − IDR2. (115)

Pulse widths of 1, 20, and 35 µs are analyzed to study the effect of the pulse width

on the metastable density. The applied voltages for the three pulses simulated in this

analysis are displayed in Figure 11.

Simulated absorption is calculated using the absorption cross section of σα =

4.3× 10−13 cm2 [Demyanov et al., 2013], and the relationship

I

I0

= exp (−α) = exp (−σα [Ar(1s5)] d) , (116)

where I is the measured intensity, I0 is the initial laser intensity, α is the absorption,

and d is the length of the gas traversed by the laser.

Beginning with the 1 µs pulse, the initial simulation results and measurements are

displayed in Figure 12. This initial simulation does not account for radiation trapping

of the Ar(1s4) → Ar + ~ω transition, causing the metastable density to decay too

rapidly after pulse termination. However, the voltage, current, and fluorescence curves

match the measurements (accounting for the noise due to the short timescale of the

pulse).

Including radiation trapping (see Holstein [1947], Holstein [1951], and Belostotskiy

et al. [2011]) by using the radiation rate of 5.6×105 s−1 measured for the cell geometry

by Han and Heaven [2014], drastically decreases the metastable decay rate (Figure

13). The decay rate after the inclusion of radiation trapping qualitatively matches

the measured decay rate, highlighting the importance of radiation trapping and the

dependence of the metastable density on the Ar(1s4) loss rate. The rapid transfer
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Figure 11. Applied voltages, Vmon, for the three pulse widths simulated in this analysis:
1, 20, and 35 µs [Han et al., 2016].

from Ar(1s5) due to electron impact collisions, Ar(1s5) + e → Ar(1s4) + e, followed

by radiative decay, Ar(1s4) → Ar + ~ω, is determined to be one of the main loss

mechanisms for metastable density.

Discharge characteristics over time become more obvious for the longer pulses.

Analyzing the 20 µs scenario, the simulated parameters are found to qualitatively

match the measured behavior over time (Figure 14). The computed value of VE

closely follows the observed value beginning with an initial spike associated with

breakdown followed by a rapid decrease to a steady-state value. The large spike in

VE during breakdown gives rise to a large value of E/N . Production of Ar(1s5) is

enhanced at higher values of E/N . As a result, the majority of the metastable density

is produced within approximately 1 µs after breakdown.

During breakdown, the electron density increases and current begins to flow. As

the current flows across the ballast resistor, VE rapidly decrease by a factor of two

to three before reaching a steady-state value. The reduction in VE combined with
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Figure 12. A comparison of the simulated and measured values for electrode voltage,
VE = V2−V3 (top), Ar(1s5)+~ω → Ar(2p9) absorption (middle top), Ar(2p10)→ Ar(1s5)+~ω
fluorescence (middle bottom), and discharge current I3 (bottom) for a 1 µs pulse.
Radiation trapping for the Ar(1s4)→ Ar+~ω transition is not included in this simulation.

the cathode fall caused by sheath formation lowers the positive column E/N by a

factor of four to five. At this steady state value of E/N , the metastable production

rate is reduced and the metastable density decreases primarily through the reaction

sequence Ar(1s5) + e→ Ar(1s4) + e followed by Ar(1s4)→ Ar + ~ω. The measured

Ar(2p10) → Ar(1s5) + ~ω fluorescence and simulated Ar(2p10) densities follow the

same trend, with a large spike at breakdown, followed by a decrease throughout the

remainder of the pulse.

Simulations for the 35 µs scenario follow the same general trend as the 20 µs

scenario (Figure 15). However, the simulated current is about 0.5 A lower than the

measured current near the end of the pulse, due to a 250 V difference in the electrode
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Figure 13. A comparison of the simulated and measured values for electrode voltage,
VE = V2−V3 (top), Ar(1s5)+~ω → Ar(2p9) absorption (middle top), Ar(2p10)→ Ar(1s5)+~ω
fluorescence (middle bottom), and discharge current I3 (bottom) for a 1 µs pulse.
Radiation trapping for the Ar(1s4) → Ar + ~ω transition is included using the value of
5.6× 105 s−1 measured by Han and Heaven [2014].

voltages. Absorption and fluorescence predictions closely follow the measured trends.

The time-dependent Ar(1s5) densities are displayed in Figure 16 for the different

pulse widths. Peak metastable densities range between 3-4×1012 cm−3, occurring

within 1 µs after pulse initiation. The 1 µs pulse experiences the fastest decay caused

by the removal of the metastable production mechanism (by removing the applied

voltage). However, the longer pulses also experience a rapid decay while the voltage

is applied. For example, the 20 µs pulse scenario predicts a decrease in the metastable

density from 3.7 × 1012 cm−3 to 7.6 × 1011 cm−3 over the duration of the pulse.

Differences in the metastable decay rates for the 20 and 35 µs pulses are due to
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Figure 14. A comparison of the simulated and measured values for electrode voltage,
VE = V2−V3 (top), Ar(1s5)+~ω → Ar(2p9) absorption (middle top), Ar(2p10)→ Ar(1s5)+~ω
fluorescence (middle bottom), and discharge current I3 (bottom) for a 20 µs pulse.
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Figure 15. A comparison of the simulated and measured values for electrode voltage,
VE = V2−V3 (top), Ar(1s5)+~ω → Ar(2p9) absorption (middle top), Ar(2p10)→ Ar(1s5)+~ω
fluorescence (middle bottom), and discharge current I3 (bottom) for a 35 µs pulse.
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differences in the applied voltage (Figure 11), with the 35 µs pulse having a lower

applied voltage, and consequently, a lower steady-state metastable density.
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Figure 16. A comparison of the simulated metastable densities for the three pulse
widths.

3.3 Kinetics and Sensitivity

To understand the time evolution of the densities, the chemical kinetics are an-

alyzed for the 20 µs pulse scenario, using a simulated 1000 V pulse. In addition to

an analysis of the reaction rates, PumpKin is employed to determine the dominant

pathways.

Plasma kinetics are analyzed for the zero-dimensional model by investigating pro-

duction and loss rates over time. The dominant electron production mechanism

during breakdown is ionization from the ground state, Ar + e− → Ar+ + 2e− (Fig-

ure 17). After breakdown, with the reduction in E/N and increase in Ar∗2 density,

the dominant production rate becomes excimer ionization: Ar∗2 + e− → Ar+
2 + 2e−.
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Throughout the simulation, dissociative recombination of Ar+
2 is the dominant elec-

tron loss mechanism, followed by ambipolar diffusion. A large change occurs in the

loss rates after pulse termination due to the ambipolar diffusion and dissociative re-

combination dependence on Te. Once the external voltage is reduced, Te experiences

a large decrease, which decreases the ambipolar diffusion rate and increases the dis-

sociative recombination rate.
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Figure 17. Positive column electron production and loss rates over time. The large
increase in the dissociative recombination rate after pulse termination is caused by a
large decrease in Te due to the removal of the applied electric field.

Similar to the electron rates, the dominant Ar(1s5) production mechanism during

breakdown is due to excitation from the ground state, Ar + e− → Ar(1s5) + e−

(Figure 18). After breakdown, the majority of Ar(1s5) is produced by electron or

neutral de-excitation from Ar(1s4). The dominant loss rate, over all times, is caused

by electron excitation to Ar(1s4). However, superelastic collisions reduce the overall

loss rate of Ar(1s5). After pulse termination, the large decrease in Te causes an

increase in the Ar(1s5) + e− ↔ Ar(1s4) + e− rates due to a collapse in the EEDF
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towards lower energies and the relatively small energy difference between the Ar(1s5)

and Ar(1s4) levels (∼ 0.08 eV).
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Figure 18. Positive column Ar(1s5) production and loss rates over time. After pulse
termination, the decrease in Te causes a collapse in the EEDF towards lower energies,
which increases Ar(1s5) + e− ↔ Ar(1s4) + e− rates.

Electron excitation of ground state Ar to Ar(2p9) shows a spike during breakdown,

when E/N is large, followed by a decrease post breakdown (Figure 19). After break-

down, the majority of Ar(2p9) is produced through He collisions with Ar(2p8) and

electron excitation from Ar(1s5). An important mechanism to OPRGL performance

is collisional mixing of Ar(2p) levels which is required to transfer pumped Ar(2p9)

densities to Ar(2p10). For the 7% Ar in He mixture, collisions with He are the dom-

inant mixing mechanism, with almost equal rates to Ar(2p10) and Ar(2p8). At 300

K, the rate coefficients for Ar(2p9) + He → Ar(2p10/2p8) + He are in the range of

1.5 − 1.6 × 10−11 cm3/s, with the rate to Ar(2p10) slightly larger than the rate to

Ar(2p8). This indicates that a roughly equal number of optically pumped Ar(2p9)

atoms will collisionally transition to the Ar(2p10) and Ar(2p8).
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Figure 19. Positive column Ar(2p9) production and loss rates over time. The post-
pulse He mixing rates follow the simulated Ar(2p) densities (using the zero-dimensional
model), which show a large decrease at pulse termination followed by a steady decay.
After pulse termination, the decrease in Te causes a collapse in the EEDF towards lower
energies, which increases the Ar(2p10) + e− → Ar(2p9) + e− rate.

While the rate information by itself is useful, it does not provide enough informa-

tion to form a complete picture due to the dependence of the rates on intermediate

species densities. To analyze the principal pathways, PumpKin (Pathway redUction

Method for Plasma KINetic models) is employed [Markosyan et al., 2014]. PumpKin

calculates the principal pathways by using an algorithm based on branching at “fast”

species. The fast species are calculated as species with a short lifetime relative to the

other species. This algorithm determines the sequences of reactions responsible for

creating and destroying a species of interest.

Applying PumpKin to the entire pulse period provides pathways matching the

dominant rates discussed above, but also presents additional information about the

reagents/products involved with the reactions (Table 5). For example, the dominant

electron loss pathway is due to dissociative recombination via Ar+
2 + e− → Ar(h.l.) +
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Ar followed by radiation to the ground state: Ar(h.l.) → Ar + ~ω. The dominant

electron production pathway early in the pulse is ionization of ground state Ar, which

occurs during breakdown. Ionization of Ar∗2 through Ar∗2 + e− → Ar+
2 + 2e− is the

dominant pathway after breakdown.

Table 5. Electron, Ar(1s5), and Ar(2p9) principal pathways calculated by PumpKin over
the entire pulse period. The pathways are in order by magnitude (larger rates first),
and the arrows, =⇒ , link the sequential reactions.

Production
or Principal

Species Loss Pathway
e− production 1) Ar + e− → Ar+ + 2e−

2) Ar∗2 + e− → Ar+
2 + 2e−

loss 1) Ar+
2 + e− → Ar(h.l.) +Ar =⇒ Ar(h.l.)→ Ar + ~ω

2) ambipolar diffusion
Ar(1s5) production 1) Ar + e− → Ar(1s5) + e−

2) Ar + e− → Ar(1s4) + e− =⇒ Ar(1s4) + e− → Ar(1s5) + e−

loss 1) Ar(1s5) + e− → Ar(1s4) + e− =⇒ Ar(1s4)→ Ar + ~ω
2) Ar(1s5) +He→ Ar +He

Ar(2p9) production 1) Ar(1s5) + e− → Ar(2p9) + e−

2) Ar(1s5) + e− → Ar(1s4) + e− =⇒ Ar(1s4) + e− → Ar(2p8) + e−

=⇒ Ar(2p8) +He→ Ar(2p9) +He
loss 1) Ar(2p9) +He→ Ar(2p10) +He =⇒ Ar(2p10)→ Ar(1s5) + ~ω

2) Ar(2p9)→ Ar(1s5) + ~ω

Concerning metastable production, the dominant pathway is simply electron exci-

tation from the ground state. The second largest production pathway is due to elec-

tron excitation to Ar(1s4) followed by electron de-excitation through Ar(1s4)+e− →

Ar(1s5) + e−. Loss pathways include electron excitation from Ar(1s5) to Ar(1s4)

followed by radiation to the ground state: Ar(1s4) → Ar + ~ω. Neutral quenching

by He, Ar(1s5) +He→ Ar+He, is the second largest loss pathway. The importance

of radiation trapping becomes apparent due to the loss mechanism involving radia-

tion from Ar(1s4). Radiation from Ar(1s4) acts as a sink for the metastable density,

and a lowered effective radiation rate caused by radiation trapping results in elevated

concentrations of Ar(1s5).

Production pathways for Ar(2p9) are dominated by electron excitation from the

Ar(1s) manifold, either directly from Ar(1s5) or through Ar(1s4). Dominant loss

pathways for Ar(2p9) are primarily through collisions with He to Ar(2p10) followed
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by radiation to Ar(1s5), or by radiation directly to Ar(1s5).

A sensitivity analysis is also performed to determine the simulation’s dependence

on the rate package. Using PumpKin, the principal pathways are calculated for each

Ar species at two different time periods: breakdown (time of maximum E/N to 0.5

µs after), and after breakdown. Excited and ionic He species are ignored because of

their minor role in the overall kinetics. Two time periods are required due to the

difference in the kinetics during and after breakdown. Once the principal pathways

are determined, they are filtered by removing pathways with contributions below a

certain threshold.

The first reduced rate package is obtained by filtering all pathways contributing

less than 10% of the total production or loss rate for each Ar species. Only the path-

ways contributing over 10% for either time period (breakdown or after breakdown)

are added to the reduced package. Ambipolar diffusion is not considered a reaction,

and all ambipolar diffusion rates are maintained in the reduced rate packages. This

Above 10% rate package contains a total of 31 reactions (Table 6), compared to 175

for the Full package (Table 2). A second rate package is reduced even further, by

only using the reactions associated with the dominant (top) pathway for each species

(Table 7). This Top Rates package contains only 20 reactions.

A comparison of the simulated electrode voltage, absorption, fluorescence, and

current for the three different rate packages (Full, Above 10%, and Top Rates) is

displayed in Figure 20. The voltage and current simulations are almost identical for

each of the rate packages, but the absorption and fluorescence simulations begin to

diverge from the measurements as the number of reactions decrease. However, the

difference between the Full and Above 10% rate packages is small, indicating that 31

reactions capture the majority of the kinetics, and most of the 175 reactions for the

Full package do not make a large contribution.
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Table 6. A list of the reactions forming the pathways that contribute above 10% of the
total rate for any Ar species during either breakdown or after breakdown, according
to a PumpKin analysis of the principal pathways for the 20 µs pulse scenario.

Reaction
Type Reaction

electron impact e− +Ar → e− + e− +Ar+

Ar∗2 + e− → Ar+
2 + e− + e−

e− +Ar → Ar(1s5) + e−

e− +Ar → Ar(1s4) + e−

e− +Ar → Ar(2p10) + e−

e− +Ar → Ar(2p9) + e−

e− +Ar → Ar(2p8) + e−

e− +Ar → Ar(h.l.) + e−

e− +Ar(1s5)→ Ar(1s4) + e−

e− +Ar(1s4)→ Ar(1s5) + e−

e− +Ar(1s5)→ Ar(2p9) + e−

e− +Ar(1s4)→ Ar(2p8) + e−

Ar+
2 + e− → Ar+ +Ar + e−

Ar∗2 + e− → Ar +Ar + e−

recombination Ar+
2 + e− → Ar(h.l.) +Ar

two heavy body He+Ar(1s5)→ He+Ar
He+Ar(1s4)→ Ar(1s5) +He
Ar +Ar(2p10)→ Ar(1s5) +Ar
He+Ar(2p9)→ Ar(2p10) +He
He+Ar(2p8)→ Ar(2p9) +He
He+Ar(2p9)→ Ar(2p8) +He

three heavy body Ar+ +Ar +He→ Ar+
2 +He

Ar+ +Ar +Ar → Ar+
2 +Ar

Ar(1s5) +Ar +He→ Ar∗2 +He
Ar(1s5) +Ar +Ar → Ar∗2 +Ar
Ar(1s4) +Ar +He→ Ar∗2 +He

radiative Ar(h.l.)→ Ar
Ar(1s4)→ Ar
Ar(2p10)→ Ar(1s5)
Ar(2p9)→ Ar(1s5)
Ar∗2 → Ar +Ar
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Table 7. A list of the reactions forming the dominant (top) pathway for any Ar species
during either breakdown or after breakdown, according to a PumpKin analysis of the
principal pathways for the 20 µs pulse scenario.

Reaction
Type Reaction

electron impact e− +Ar → e− + e− +Ar+

Ar∗2 + e− → Ar+
2 + e− + e−

e− +Ar → Ar(1s5) + e−

e− +Ar → Ar(1s4) + e−

e− +Ar → Ar(2p10) + e−

e− +Ar → Ar(2p9) + e−

e− +Ar → Ar(2p8) + e−

e− +Ar → Ar(h.l.) + e−

e− +Ar(1s5)→ Ar(1s4) + e−

e− +Ar(1s4)→ Ar(1s5) + e−

Ar+
2 + e− → Ar+ +Ar + e−

recombination Ar+
2 + e− → Ar(h.l.) +Ar

two heavy body He+Ar(2p9)→ Ar(2p10) +He
He+Ar(2p8)→ Ar(2p9) +He

three heavy body Ar+ +Ar +He→ Ar+
2 +He

Ar(1s5) +Ar +He→ Ar∗2 +He
radiative Ar(h.l.)→ Ar

Ar(1s4)→ Ar
Ar(2p10)→ Ar(1s5)
Ar∗2 → Ar +Ar
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Figure 20. Simulated electrode voltage, absorption, fluorescence, and current for the 20
µs pulse scenario using a variety of reaction rate packages: full rate package, excluding
pathways below 10% of the total rate for each species, and only the top pathways for
each species.

During the pulse, the metastable densities from the Above 10% rate package are

within 30% of the densities predicted by the Full, as displayed in Figure 21. The Top

Rates package shows a larger difference of approximately 50% during the pulse. Near

the end of the pulse, simulated metastable densities are nearly equal for the three

rate packages.

The Ar(2p10) densities show a strong dependence on the rate package, with a sig-

nificant increase in the decay rate for the Top Rates versus Full packages (Figure 22).

Both of the reduced rate packages overestimate the initial Ar(2p10) production, with

a 120% overestimation for the Top Rates package. Similar to the Ar(1s5) densities,

the relative difference between the Full and Above 10% packages are within approx-
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imately 30%. However, the Top Rates package shows a large difference, essentially

dropping to a zero density shortly after pulse initiation.
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Figure 21. Simulated Ar(1s5) densities for a 20 µs pulse, using the full reaction rate
package and two reduced packages, along with the relative difference between the re-
duced rate packages compared to the full rate package.

While the Top Rates package shows a large difference in the Ar(2p10) simulations,

the metastable densities are within 50% of the Full package simulations. If metastable

densities are the focus of a kinetic analysis, then the much reduced Top Rates package

may suffice. The Above 10% rate package closely resembles the Full package simula-

tions, indicating that a reduced rate package of only 31 of the key reactions may be

sufficient for many modeling efforts.
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Figure 22. Simulated Ar(2p10) densities for a 20 µs pulse, using the full reaction
rate package and two reduced packages, along with the relative difference between the
reduced rate packages compared to the full rate package.

3.4 Zero and One-Dimensional Model Comparison

Simulations are repeated for the 1000 V, 20 µs pulse using a one-dimensional fluid

model. A comparison between the zero and one-dimensional models is performed

over time by selecting a representative position in the positive column of the one-

dimensional model, here taken to be 3.5 mm from the cathode. Results from the one-

dimensional model at the 3.5 mm position are then compared to the zero-dimensional

model over time.

Voltages, electron temperatures, reduced electric fields, and current densities sim-

ulated by the models show excellent agreement over time in the positive column

(Figure 23). During breakdown, the electron density increases and current begins

to flow. As the current flows across the ballast resistor the electrode voltage, VE, is

reduced from 1000 V to approximately 400 V. This decrease in VE in combination

with the formation of a cathode fall reduces the positive column E/N from the peak
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value of 23 Td during breakdown to 4-5 Td post-breakdown. Similarly, the positive

column electron temperature experiences a reduction from approximately 4 eV to 2

eV due to the reduction in E/N . After pulse termination, the electron temperature

rapidly approaches the neutral gas temperature.
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Figure 23. Electrode voltage, positive column Te, E/N magnitude, and current density
magnitude over time for the 20 µs pulse.

Electron densities in the positive column show a rapid increase during breakdown,

followed by an almost constant magnitude during the remainder of the pulse, as

shown in Figure 24. Initially, Ar+ is the dominant ion, but three-body collisions at

atmospheric pressures convert Ar+ to HeAr+ and Ar+
2 throughout the pulse duration.

The ∼ 0.02 eV binding energy of HeAr+ allows for rapid dissociation by neutral

collisions, HeAr+ + M → Ar+ + He + M , and yields a positive column HeAr+

density of approximately 109 cm−3. The ∼ 1.26 eV binding energy of Ar+
2 yields

dissociation rates due to neutral collisions, Ar+
2 + M → Ar+ + Ar + M , that are

insignificant at 300 K. As a result, Ar+
2 quickly becomes the dominant ion with a

positive column density of ∼ 6× 1011 cm−3, which is also displayed in Figure 24.

74



www.manaraa.com

After pulse termination, electron and ion densities decay rapidly due to the re-

moval of the large voltage required to sustain the glow discharge. The one and zero-

dimensional models show reasonable agreement throughout the pulse duration, with

slightly lower electron densities predicted by the zero-dimensional model. Both mod-

els predict a temporal variation in electron and ion densities before pulse termination,

indicating that a steady-state is not reached over the pulse duration.
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Figure 24. Positive column electron and ion densities over time for the 20 µs pulse.

Excited species densities show peaks during breakdown followed by a decay through-

out the remainder of the pulse (Figure 25), qualitatively matching the Ar(1s5) ab-

sorption and Ar(2p10) fluorescence measurements by Han et al. [2016]. Densities of

the Ar(1s) species show a smooth decay while the Ar(2p) species show a large ini-

tial spike. This behavior is due to electron excitation from ground state following

Ar + e− → Ar∗ + e−, where excitation to the Ar(1s) manifold is maintained at the

post-breakdown E/N magnitudes while Ar(2p) manifold excitation is drastically re-

duced after breakdown. The zero and one-dimensional simulations are in agreement
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throughout the pulse and after pulse termination.
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Figure 25. Positive column Ar(1s) and Ar(2p) densities over time for the 20 µs pulse.

One-dimensional spatial distributions are analyzed at the end of the pulse (20

µs), as the discharge approaches a steady-state. In the one-dimensional model, the

cathode is located at x = 0 mm with the anode at x = 5 mm. Voltage, Te, and

E/N show agreement between the zero and one-dimensional models in the positive

column (Figure 26). As expected, a large voltage drop of ∼ 215 V is observed near the

cathode, giving rise to a large E/N magnitude, which in turn elevates the local Te. An

E/N magnitude of approximately 380 Td gives rise to a Te of 11 eV near the cathode.

A positive column E/N magnitude of 4-5 Td produces an electron temperature of

approximately 2 eV. Near the anode, a slight increase in E/N magnitude and Te are

observed due to a voltage drop of approximately 3 V occurring over ∼ 30 µm.

Figure 27 displays electron and ion densities versus position near the end of the

pulse, and shows agreement between the zero and one-dimensional models in the

positive column. Peak Ar+ and electron densities are observed in the cathode layer
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Figure 26. Spatial profile of voltage, Te, and E/N magnitude at the end of the 20 µs
pulse.

due to ionization rate dependence on E/N . In the positive column, Ar+
2 is the

dominant ion with densities ∼ 15% larger than Ar+. However, Ar+ is the dominant

ion near the electrodes. The low binding energy of HeAr+ together with the reaction

HeAr+ +M → Ar+ +He+M yield HeAr+ densities of ∼ 1011 cm−3 in the cathode

layer and ∼ 109 cm−3 elsewhere in the cavity.

Similarly, excited species densities simulated by the two models are nearly equal

in the positive column (Figure 28). Peak densities are observed in the cathode layer

where E/N and Te are elevated, increasing the excitation rates. Excitation rates are

also increased near the anode following the increase in E/N magnitude and Te. This

spatial information is vital to operation of an OPRGL, due to the dependence of laser

intensity on the metastable density. The measured distribution of laser intensity was

found to follow a similar pattern [Han et al., 2016], with a large peak in intensity near

the cathode. However, the measured peak was found to take place approximately 1

mm from the cathode while the simulations show the peak 0.1 mm from the cathode.
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Figure 27. Spatial profile of electron and ion densities at the end of the 20 µs pulse.

This difference is most likely due to the non-local ionization/excitation behavior in the

cathode layer and negative glow, which is underestimated using fluid approximations

[Fiala et al., 1994; Lymberopoulos and Economou, 1995]. A hybrid kinetic-fluid model

would provide more insight into the electron behavior near the electrodes.
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Figure 28. Spatial profile of Ar(1s) and Ar(2p) densities at the end of the 20 µs pulse.

3.5 Variable EEDF Calculations

One-dimensional simulations using rate coefficients extracted from BOLSIG+ re-

quire a look-up table of the rate coefficients as a function of Te to calculate the

reaction source terms for the spatial Te profiles. Following the example provided

by COMSOLTM, the rate coefficient look-up tables are calculated before the one-

dimensional simulations using estimated densities to calculate the EEDFs. While

an initial simulation performed with ZDPlasKin provides a decent estimate of the

positive column densities, it is uncertain how this method affects the rate coefficients

near the sheaths where the excited species densities are orders of magnitude larger

than the positive column densities.

To test the effect of a time varying EEDF calculation on the one-dimensional

fluid simulations, results are compared 10 µs after pulse initiation for two methods of

calculating the EEDF. The first method uses a pre-run ZDPlasKin simulation of the

positive column to estimate densities and provide a constant look-up EEDF table.
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The second method uses the densities simulated by the one-dimensional fluid model

to update the EEDF look-up table after each simulated microsecond. This variable

EEDF calculation uses two sets of EEDFs to provide an EEDF table for each position:

one derived from the positive column densities extracted at the 3.5 mm position, and

the other from the negative glow where the metastable densities are largest. The two

sets of EEDFs are then linearly interpolated at each position, i, based on the current

metastable density, [Ar(1s5)]i:

EEDFi =

(
[Ar(1s5)]i − [Ar(1s5)]PC

[Ar(1s5)]peak − [Ar(1s5)]PC

)
EEDFpeak (117)

+

(
1− [Ar(1s5)]i − [Ar(1s5)]PC

[Ar(1s5)]peak − [Ar(1s5)]PC

)
EEDFPC ,

where EEDFi is the EEDF calculated for position i, EEDFpeak is the EEDF cal-

culated for the negative glow with a peak metastable density [Ar(1s5)]peak, and

EEDFPC is the EEDF calculated for the positive column metastable density [Ar(1s5)]PC .

In the Faraday dark space, where metastable densities are less than the positive col-

umn densities, the EEDF is set to the positive column EEDF. This variable EEDF

table updates the EEDFs over time and accounts for differences in the EEDFs due

to spatially varying densities.

The calculated electron temperatures for the variable and constant EEDF scenar-

ios 10 µs after pulse initiation are displayed in Figure 29. A peak relative difference

of approximately 3% (relative to the constant EEDF) is observed near the minimum

Te, indicating a minor change for the two methods. Electron densities show similar

predictions for the two methods, with a maximum relative difference of 4% at the

peak electron density (Figure 30). Metastable densities show a slightly larger varia-

tion between the two methods with a peak difference of 12% in the transition region

between the negative glow and the Faraday dark space (Figure 31). However, the
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positive column Ar(1s5) densities are nearly equal.
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Figure 29. Spatial electron temperature profiles 10 µs after pulse initiation using
constant and variable EEDF calculations.

A comparison of the EEDFs calculated using the two methods is displayed in

Figure 32. The variable method calculates two sets of EEDFs based on the densities

in the positive column and the densities in the negative glow. The constant EEDF

method calculates a single set of EEDFs based on the positive column densities es-

timated by ZDPlasKin. For the peak electron temperature of 11 eV, the EEDFs

calculated by the two methods are nearly identical, indicating a minor change in rate

coefficients for the large values of Te. The EEDFs calculated for the positive column

electron temperatures of 2 eV show agreement for energies below the Ar(1s5) excita-

tion threshold, then begin to diverge at higher energies. However, the EEDF values

are on the order of 10−7 eV−3/2 or below when differences above 10% occur, which

renders the rate coefficients virtually unchanged as indicated by the agreement in the

positive column displayed in Figures 29 to 31.

A comparison of the EEDFs calculated for a variety of electron temperatures is

81



www.manaraa.com

1010

1011

1012

E
le

ct
ro

n
 D

e
n
si

ty
 [
cm

−3
]

Constant

Variable

0 1 2 3 4 5
Position [mm]

−5

−4

−3

−2

−1

0

1

R
e
la

ti
v
e
 D

if
fe

re
n
ce

 [
%

]

Figure 30. Spatial electron density profiles 10 µs after pulse initiation using constant
and variable EEDF calculations.

displayed in Figure 33. The three sets of EEDFs correspond to the densities derived

from ZDPlasKin for the constant EEDF and the two sets of densities used in the

variable EEDF calculations based on the positive column and negative glow densities

from the one-dimensional fluid model. The constant and variable EEDFs calculated

using the positive column densities are nearly identical over all electron temperatures.

At lower electron temperatures, the variable EEDFs calculated using negative glow

densities shows an increase in energetic electrons due to superelastic collisions. As

the excited species densities are two orders of magnitude larger than the positive col-

umn densities, the contribution of superelastic collisions to the high energy electrons

becomes significant. However, at electron temperatures above 8 eV, as observed in

the cathode layer, all three sets of EEDFs are nearly identical. This indicates that

the contribution of superelastic collisions becomes insignificant at elevated electron

temperatures.

Overall, the difference between the two methods is small, indicating that a pre-
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Figure 31. Spatial Ar(1s5) density profiles 10 µs after pulse initiation using constant
and variable EEDF calculations.

run look-up table based on ZDPlasKin simulations of the positive column provides a

viable method of obtaining electron impact rate coefficients for one-dimensional fluid

simulations. In the positive column, which is the region of interest for an OPRGL,

the agreement between the constant and variable EEDF techniques is excellent.
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Figure 32. EEDFs calculated using the variable and constant methods for the electron
temperatures of 2 and 11 eV corresponding to the positive column and cathode sheath,
respectively. The variable EEDF method calculates two EEDFs: one for the positive
column densities and one for the negative glow densities.
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Figure 33. EEDFs calculated for a variety of electron temperatures using the three sets
of densities implemented in the constant and variable EEDF calculations. The constant
EEDFs are calculated using densities from ZDPlasKin prior to the one-dimensional sim-
ulations. The negative glow and positive column EEDFs are calculated using the neg-
ative glow and positive column densities from the one-dimensional simulations, which
are linearly interpolated to provide a variable EEDF.

85



www.manaraa.com

3.6 Conclusions

Simulations of a 7% Ar in He pulsed DC discharge at a pressure of 270 Torr are

performed for 1000 V pulses with temporal widths of 1, 20, and 35 µs using a zero-

dimensional kinetic model. Species relevant to the operation of an optically pumped

rare gas laser are analyzed over a single pulse duration to identify key kinetic path-

ways. Comparisons to the experimental voltage, current, fluorescence, and absorption

measurements by Han et al. [2016] show temporal agreement. The inclusion of radi-

ation trapping for the Ar(1s4)→ Ar+ ~ω transition decreases post-pulse metastable

decay rates, matching the measured trends.

One-dimensional fluid simulations are also performed for the 20 µs, 1000 V sce-

nario, providing spatial density profiles. Comparisons of the zero and one-dimensional

models show agreement in the positive column, where the zero-dimensional model is

appropriate. Both models predict a spike in excitation and ionization rates during

breakdown due to elevated voltage, E/N magnitude, and Te during pulse initiation.

After breakdown, the combination of a reduced electrode voltage and cathode fall for-

mation results in a factor of 5 decrease in the positive column E/N . This reduction

in E/N drastically decreases Ar excitation and ionization via electron impact, with

an order of magnitude reduction in excitation rates and a two order of magnitude

reduction in ionization rate within 2 µs after breakdown.

Electron densities steadily approach a constant value while the dominant ion shifts

from Ar+ to Ar+
2 over the pulse duration due to three-body collisions. For the ge-

ometry and simulated discharge conditions, dissociative recombination is found to be

the dominant electron loss mechanism. Metastable loss rates rapidly increase post-

breakdown, resulting in peak metastable densities near 4 × 1012 cm−3, decreasing

by a factor of 3 over the pulse duration. Radiation trapping plays a key role in

metastable decay rates through the reaction sequence Ar(1s5) + e− → Ar(1s4) + e−
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followed by Ar(1s4) → Ar + ~ω. The Ar(2p) species display initial spikes followed

by an immediate reduction in density after breakdown due to the reduced electron

excitation rates from ground state at the post-breakdown E/N . Collisions with He

are observed to be responsible for Ar(2p9) loss, with an almost equal transfer to the

Ar(2p10) and Ar(2p8) levels. As expected, excited species densities are largest near

the cathode layer, with a two order of magnitude difference between the peak and

positive column densities.

A sensitivity analysis of the reaction rate package is also performed, pinpointing

the dominant pathways for each species. The number of reactions are reduced by

placing a threshold on pathway contributions to the total rate for each species during

breakdown and after breakdown. Reducing the number of reactions from 175 to 31

produces a minor change in the simulation results. Further reducing the number

of reactions to 20 creates a noticeable difference in the simulations with a factor of

1.5 difference in the metastable densities during the pulse, compared to the full rate

package. This sensitivity analysis is performed at a pressure of 270 Torr for a 7% Ar

in He mixture, and cannot be extended to all Ar-He discharge scenarios.

An analysis of the one-dimensional fluid model dependence on EEDF calculations

is also performed, showing a slight difference between the two methods of calculating

the EEDFs. The first method relies on EEDFs calculated from the positive column

densities predicted by ZDPlasKin, which is run prior to the fluid model to provide a

lookup table of rate coefficients based on the local Te. The second method calculates

a set of EEDFs for the fluid model densities predicted in the negative glow and a sep-

arate set of EEDFs for the positive column densities. These two sets of EEDFs are

then interpolated to provide an EEDF based on the metastable density at each posi-

tion. The positive column electron temperatures, electron densities, and metastable

densities are nearly equal for the two approaches, verifying the use of pre-calculated
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EEDFs for simulations of the positive column.

The metastable Ar(1s5) densities are highly dependent on the reduced electric

field, E/N . Furthermore, laser performance also depends strongly on Ar(1s5) densi-

ties. As a result, efforts to maintain an elevated E/N over large active volumes will

be helpful in OPRGL development.
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IV. Radio Frequency Dielectric Barrier Discharge

Optically pumped rare gas lasers that employ Ar as the lasing media require suf-

ficient production of Ar(1s5) to act as the lowest energy species of the laser system

[Han et al., 2014]. Diode pumping from Ar(1s5) to Ar(2p9) followed by rapid col-

lisional relaxation from Ar(2p9) to Ar(2p10) allows for a population inversion and

subsequent lasing to Ar(1s5). The dependence of diode laser absorption and opti-

cal gain on Ar(1s5) densities [Rawlins et al., 2015; Demyanov et al., 2013] requires

metastable densities on the order of 1013 cm−3 at atmospheric pressures to produce

output laser intensities above 100 W/cm2 for an active medium length of 1.9 cm [Han

et al., 2014]. Near-atmospheric pressures help to match the diode laser bandwidth

to the Ar(1s5) + ~ω → Ar(2p9) absorption linewidth and increase the non-adiabatic

transition rate from Ar(2p9) to Ar(2p10). Thermal instabilities are problematic at

these higher pressures [Haas, 1973; Napartovich, 2001; Fridman et al., 2005], but ra-

dio frequency (RF) dielectric barrier discharges (DBDs) are able to maintain stability

due to a limited ionization period occurring near the cycle peaks and an increased

energy threshold for instability formation [Raizer et al., 1995].

Previous kinetic analyses of Ar-He mixtures in an OPRGL have been performed

to find the optimal Ar-fraction and pressure for laser efficiency. One kinetic study

analyzed laser efficiency as a function of pressure and Ar-He composition for a non-

specific discharge scenario, concluding that a mixture of approximately 1% Ar in He

results in the largest total efficiency, defined as the output power divided by the sum

of discharge and pump powers [Demyanov et al., 2013]. A separate experimental and

computational analysis of microwave resonator-driven microplasmas at a variety of

Ar-He mixtures and pressures ranging from 100-730 Torr found that an Ar-fraction

near 5% at a pressure of 100 Torr produces the largest metastable densities [Hoskinson

et al., 2016]. Additionally, peak metastable densities were found to decrease as the
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discharge pressure was increased. The metastable density trends as a function of

Ar-He mixture presented in this document for an RF-DBD deviate from the trends

observed for microwave resonator-driven microplasmas, most likely due to differences

in discharge conditions and cavity size.

This chapter analyzes the Ar(1s5) metastable density as a function of Ar-fraction,

pressure, and voltage for an RF-DBD. A one-dimensional fluid model is used to cal-

culate metastable density dependence on Ar-fraction, pressure, and applied voltage.

Simulated fluorescence from the one-dimensional fluid model is compared with exper-

iment in the centerline of the discharge cavity. The α to γ-mode transition for a 15%

Ar in He mixture at a pressure of 200 Torr is simulated as a part the analysis as a func-

tion of applied voltage. Additionally, a zero-dimensional effective DC model of the

bulk plasma is implemented and compared to the one-dimensional simulations. Due

to the relatively large computational time required for the one-dimensional RF-DBD

simulations, use of the zero-dimensional approach is preferable in the bulk plasma

where the model is appropriate. A simplified zero-dimensional model is also devel-

oped, providing insight into the key kinetics controlling metastable behavior as a

function of pressure and Ar-fraction.

4.1 Models

Electron impact rate coefficients and transport parameters are calculated using

BOLSIG+ [Hagelaar and Pitchford, 2005]. Rate coefficients for electron impact col-

lisions are computed from the non-Maxwellian electron energy distribution function

along with the reaction cross section. The EEDF is dependent on species densities

and the reduced electric field, E/N . A one-to-one mapping of E/N to the electron

temperature, Te = 2〈ε〉/3 where 〈ε〉 is the average electron energy, provides a unique

EEDF for a given Te, allowing Te to be used as a proxy for E/N during EEDF com-
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putation. Additionally, for a driving angular frequency of ω = 2π× 13.56 MHz in the

pressure range of 200-500 Torr, the reduced angular frequency ω/N is on the order

of 10−17 m3/s, which allows the EEDFs to be calculated using a DC field [Hagelaar

and Pitchford, 2005].

The EEDF dependence on Ar-He mixture is displayed in Figure 34 for an electron

temperature of 2 eV. As the fraction of He is increased, the population of high-

energy (above excitation and ionization thresholds) electrons increases, approaching

a Maxwellian distribution. This increase in the population of high-energy electrons

increases the Ar excitation and ionization rate coefficients. However, the electron

excitation and ionization rates also depend on the Ar density, [Ar], which increases

with Ar-fraction. As displayed in Figure 35, the interplay between Ar density and

the Ar + e− → Ar(1s5) + e− excitation rate coefficient, kexc, controls the excitation

frequency, given by the kexc[Ar] (excitation rate divided by the electron density).

For the 200 Torr simulations the maximum excitation frequency shifts to larger Ar-

fractions for Te > 3 eV. For Te < 3 eV, the lower Ar-fractions have elevated excitation

frequencies due to the increased population of high-energy electrons.

The reduced electric field as a function of Te is displayed in Figure 36 where

E/N magnitudes of approximately 5 Td, typical of the bulk plasma at steady-state,

correspond to higher values of Te as the Ar-fraction increases. These larger values

of Te are caused by a reduction in the EEDF for energies below ∼ 3 eV as the Ar-

fraction becomes larger (Figure 34). The loss in low energy electrons are compensated

by increasing the EEDF population at energies just below the excitation threshold,

which increases the distribution average. However, the EEDF population at energies

above the excitation and ionization thresholds are also decreased as the Ar-fraction

is increased. As a result, the increase of Te with Ar-fraction at E/N ≈ 5 Td does not

correspond to an increase in excitation or ionization.
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Figure 34. Electron energy distribution functions for varying Ar-He mixtures with an
electron temperature of 2 eV, as calculated by BOLSIG+.
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Figure 35. Metastable excitation frequencies, kexc[Ar], at 200 Torr for varying Ar-He
mixtures, as calculated by BOLSIG+.
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Figure 36. Electron temperatures mapped to reduced electric fields for varying Ar-He
mixtures, as calculated by BOLSIG+.

BOLSIG+ calculated electron mobilities and experimentally measured mobilities

in pure Ar have been shown to agree in the range of reduced electric fields esti-

mated for this analysis [Pitchford et al., 2013]. Converting the E/N to Te (Figure 36)

and allowing for a variation in Ar-He mixture provides the mobility trends observed

in Figure 37. Electron mobilities increase with increasing Ar-fraction for electron

temperatures below ∼ 2 eV. Above 2 eV, the relationship is reversed, with lower

Ar-fractions corresponding to larger electron mobilities. The electron diffusion co-

efficients follow a similar pattern, but the reversal occurs near 3 eV (Figure 38).

Electron energy mobilities and diffusion coefficients (defined in Equations 88 and 89)

show similar trends, as displayed in Figures 39 and 40.

A comparison of electron diffusion coefficients calculated by BOLSIG+ to diffusion

coefficients calculated from the electron mobility using the Einstein relation, De =

µeTe, is displayed in Figure 41. For pure Ar, the BOLSIG+ calculated diffusion

coefficient is nearly a factor of two larger than the diffusion coefficient calculated

93



www.manaraa.com

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Te  [eV]

0.0

0.2

0.4

0.6

0.8

µ
e
N

 [
1

0
25

/V
·m

·s]

5% Ar

10% Ar

15% Ar

25% Ar

50% Ar

75% Ar

100% Ar

Figure 37. Electron mobilities for varying Ar-He mixtures, as calculated by BOLSIG+.
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Figure 38. Electron diffusion coefficients for varying Ar-He mixtures, as calculated by
BOLSIG+.
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Figure 39. Electron energy mobilities for varying Ar-He mixtures, as calculated by
BOLSIG+.
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Figure 40. Electron energy diffusion coefficients for varying Ar-He mixtures, as calcu-
lated by BOLSIG+.
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using the Einstein relation. This is due to the energy dependence of the momentum

transfer collision frequency [Hagelaar and Pitchford, 2005]. However, for He rich

mixtures, the Einstein relation is satisfied and the diffusion coefficients from the two

approaches are nearly equal.

Ion mobilities are taken from Ward [1962] (Equation 11) along with an application

of Blanc’s Law [Blanc, 1908; Biondi and Chanin, 1961] to determine the mobility in

a mixture. Following the measurements of Lindinger and Albritton [1975], all Ar ion

species are assumed to have the same mobility as Ar+, and all He ions are assumed

to have the mobility of He+. To calculate the ion mobilities in a mixture of Ar and

He, the mobility of Ar+ in He is assumed to be equal to the mobility of He+ in He,

and He ion mobilities are held constant over Ar-He mixtures.

A fluid approach [Lymberopoulos and Economou, 1993; Boeuf and Pitchford, 1995;

Farouk et al., 2006; Gogolides and Sawin, 1992; COMSOL, 2016] is used to model

the discharge in one-dimension, employing the Scharfetter and Gummel [1969] finite

volume scheme. The electron density, ne, and energy density, nε, are calculated over

time via the one-dimensional drift-diffusion equations described in Section 2.4. In the

case of a dielectric barrier discharge, Neumann boundary conditions are required for

the electric potential, V , at the dielectric boundary:

n · (ε0E1 − εdE2) = σs, (118)

dσs
dt

= n · je + n · jp, (119)

where E1 is the electric field at the boundary inside the discharge cavity, E2 is the

electric field in the dielectric, εd is the dielectric permittivity, σs is the surface charge

density, je is the electron current density to dielectric surface, jp is the ion current

density to dielectric surface, and n is the outward normal vector to the boundary. The

electric field inside the left dielectric depends on the applied voltage to the terminal
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Figure 41. A comparison of electron diffusion coefficients calculated by BOLSIG+ to
diffusion coefficients calculated from the electron mobility using the Einstein relation,
De = µeTe.

and the voltage on the left dielectric boundary: E2 = (Vel − VBC) /δ, where Vel is the

electrode voltage, VBC is the voltage at the dielectric barrier, and δ is the dielectric

thickness. Including the electrode voltage, Equation 118 can be rewritten in terms of

the Neumann boundary condition for the left boundary in one-dimension:

∂V

∂x

∣∣∣
BC,left

= −E1,left =
σs,left
ε0

+
εd (VBC,left − Vel,left)

ε0δ
. (120)

A similar expression is obtained for the right boundary:

∂V

∂x

∣∣∣
BC,right

= −E1,right = −σs,right
ε0

+
εd (Vel,right − VBC,right)

ε0δ
. (121)

In addition to the one-dimensional fluid model, we also develop a simplified zero-

dimensional approach to the RF discharge where the root-mean-square (RMS) voltage

is treated as an effective DC voltage [Raizer et al., 1995]. This reduces the RF-
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DBD discharge to an effective DC discharge, which greatly reduces computation time

required for simulation. The zero-dimensional approach is not derived mathematically

from the one-dimensional fluid model, but instead provides an alternative approach

to modeling an RF-DBD.

If the driving angular frequency, ω, is much greater than the frequency of energy

loss by electrons, (2me/M) νm, where M is the mass of the neutral atoms and νm is

the electron collision frequency, then the ionization frequency, νi, in an RF electric

field can be approximated by the ionization of a DC electric field with the magnitude

reduced by a factor of
√

2 [Raizer et al., 1995]:

νi,RF (Ep) ≈ νi,DC

(
Ep√

2

)
for νm � ω �

(
2me

M

)
νm, (122)

where Ep is the peak applied electric field for the RF discharge.

For pure Ar at 200 Torr, ω ≈ 8.5× 107 Hz and a collision frequency of νm ≈ 4.6×

1011 Hz calculated by BOLSIG+ for E/N = 5 Td provides (2me/MAr) νm ≈ 1.3×107

Hz, which fulfills the requirements for treating the RF field as a DC field with a

reduced magnitude. However, for a 1% Ar in He mixture, a collision frequency of

νm ≈ 2.8 × 1011 Hz produces an electron energy loss frequency of (2me/MHe) νm ≈

7.7 × 107 Hz, which does not satisfy the ω � (2me/M) νm inequality. We note that

while the ω � (2me/M) νm inequality is not satisfied for He rich mixtures in the

pressure range of 200-500 Torr, the νm � ω inequality holds over all pressures and

mixtures analyzed.

The zero-dimensional effective DC model, implemented through ZDPlasKin, mod-

els the bulk plasma of an RF-DBD by numerically integrating the system of reaction

rate equations over time. The electron impact rate coefficients and transport parame-

ters are dependent on E/N , which is calculated at each time step to provide an input

to BOLSIG+.
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Reduced electric fields are calculated from the bulk plasma voltage by

E

N
=

Vb
Nde

, (123)

where de is the effective distance between electrodes (Equation 58), and Vb is the

voltage across the bulk plasma (Equation 54). Bulk plasma voltages are calculated

over time following the approach outlined by Eismann [2011], with the sheath and

dielectric voltage terms acting as an effective ballast resistor for the RF-DBD. Making

the substitution

χ =
dα
ωε0

+
2δ

ωεd
, (124)

(Vs + Vd)
2 = j2

(
dα
ωε0

+
2δ

ωεd

)2

= j2χ2, (125)

the voltage across the bulk plasma can be rewritten as

V 2
b = V 2

app − j2χ2. (126)

For this discharge scenario, the parameter χ acts like the ballast resistor in the DC

scenario, limiting the bulk plasma voltage as the current increases.

While the sheath thickness varies over time with the applied voltage, the peak

thickness can be estimated as dα = 2A [Raizer et al., 1995]. At each time step, the

amplitude of sheath oscillations, A, is calculated from Equation 57 using the Newton-

Raphson method. The electron collision frequency is calculated by BOLSIG+ and the

plasma frequency is calculated from the electron density of the previous time-step.

Instead of a time varying applied voltage, the zero-dimensional model uses an RMS

voltage for Vapp, providing an effective DC approach. Bulk plasma E/N magnitudes

are calculated over time accounting for changes in Vb due to variations in current
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density and sheath thickness [Eismann, 2011]. The time dependent E/N magnitudes

provide electron impact rate coefficients used in plasma kinetic calculations, which

are performed until the E/N reaches a steady-state value. This zero-dimensional

approach requires minutes per simulation on a HP ENVY 750-197c Desktop, which

is significantly less than the tens of hours required per simulation using the one-

dimensional fluid model. The reduced computation time enables a full exploration of

the parameter space.

Convergence Study in Time.

A convergence study in time is performed for our implementation of the Scharfetter

and Gummel [1969] finite volume scheme by varying the time step and analyzing the

difference in metastable density solutions. One-dimensional simulations of the RF-

DBD scenario are performed through 10 cycles using a 15% Ar in He mixture at a

pressure of 200 Torr. Each metastable density solution obtained using a time step ∆t

is compared to the solution obtained using a time step half as large, ∆t/2. Figure 42

displays the relative difference in solutions, |u∆t−u∆t/2|/|u∆t|, against the time step,

∆t, using a log-log scale.

A forward Euler method is used for time-stepping, which is a first order explicit

scheme in time, O (∆t). In a log-log plot, a first order scheme has a slope of one,

which is displayed in Figure 42 as O (∆t). The simulated results follow the slope of

O (∆t), matching the expected convergence in time for a first order scheme.
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Figure 42. Relative differences in solutions, |u∆t−u∆t/2|/|u∆t|, as a function of the time
step, ∆t. The slope of the solution differences matches the slope of a first order in time
method, O (∆t).

4.2 Clam Shell Electrodes Experiment

Description of Experiment.

The clam shell electrodes experiment uses the geometry displayed in Figure 43

with a driving angular frequency of ω = 2π×13.56 MHz. Ultra-high purity (99.999%)

Ar and He gases are filtered through an SAES high-flow rate filter (MC200-904FV)

which reduces impurities to 100 parts-per-trillion, 2-3 orders of magnitude lower than

the Ar∗ density. The Ar-He mixture is varied for an assortment of pressures using a

delivered power of 10 W. This configuration consists of a 0.25 inch tube with a 0.15

inch inner diameter in addition to a 2 inch clam shell copper electrode with a 2 mm

thickness. Electrodes were machined with an edge gap of 0.13 inch and a maximum

gap of 0.25 inch at the center of the tube.

End-on imagery is collected for the RF-DBD. The end-on images are collected
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Figure 43. A picture of the clam shell electrode RF-DBD experimental setup during
a discharge at a pressure of 800 Torr.

using a Point Grey Grasshopper (GS3-U3-32S4M-C) USB 3.0 camera with 3.45 µm

pixel pitch and a 1/1.8′′ CMOS detector. The spectra sensitivity of the detector

ranges from 300-900 nm. A Computar 50 mm aperture, variable focus, f 1:1.8 lens

is used to image the center of the discharge at a distance of 35 cm with an f/# of

16. The optical system results in a resolution of 41 µm per pixel. Figure 44 shows

an example of the images collected for a 10% Ar in He mixture at 300 Torr. The

yellow rectangle, 90 by 10 pixels or 3.69 by 0.41 mm, outlines the region in which the

apparatus is most similar to a parallel plates configuration. These rows are averaged

together to facilitate comparison to the simulations. The bright outer region is caused

by plasma emission being wave-guided by the Pyrex tube. Doppler widths from the

spectra measurements indicated a temperature of 440± 20 K, over all pressures and

Ar-fractions [Eshel et al., 2016].

While the electric field produced by the clam shell electrodes is different than the

electric field for parallel plates, the centerline between electrodes can be approximated
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Figure 44. End-on image of an RF-DBD for a 10% Ar in He mixture at 300 Torr with
an applied power of 10 W. The outer fluorescence is emission from the sheath that is
waveguided down the Pyrex tube.

by parallel plates. The electric potential calculated for the clam shell electrodes is

displayed in Figure 45 and the associated electric field is displayed in Figure 46.

Near the edge of the electrodes, the electric field is larger due to the shorter distance

between electrodes. However, near the center of the electrodes, the electric field is

similar to the field produced by parallel plates. A comparison of the electric field

magnitude at the center of the tube indicates a roughly 25% increase in the electric

field due to the curvature of the electrodes compared to the parallel plates scenario.

Simulations.

Varying Ar-He Mixture.

The discharge chamber used to approximate the centerline of the clam shell ge-

ometry consists of parallel-plate electrodes separated by 6.4 mm with both electrodes

covered by a 1.3 mm thick dielectric of εd = 5ε0 (Figure 47). Including radiation
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Figure 45. Voltage equipotential curves for clam shell electrodes with 500 V on the
top plate and the bottom plate grounded. The red lines are the electrodes.

Figure 46. Electric fields for clam shell electrodes with 500 V on the top plate and the
bottom plate grounded. The red lines are the electrodes.
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trapping, an effective A-coefficient of 1.7× 105 s−1 is used for the Ar(1s4)→ Ar+~ω

transition for this discharge geometry [Holstein, 1951]. At near-atmospheric pres-

sures, the magnitude of radiation trapping is assumed to be independent of pressure

[Holstein, 1947] and mixture.

V
app
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 = 5.0 ε

0

E
l
e
c
t
r
o
d
e

D
i
e
l
e
c
t
r
i
c

δ = 1.3 mm

Figure 47. A cross section of the simulated RF-DBD chamber used for the clam shell
electrodes. The plates are assumed to be infinite in extent in the calculations.

Simulations are performed for a pressure of 300 Torr and a peak applied voltage of

500 V with a driving angular frequency of 2π×13.56 MHz (Vapp = 500 sin [ωt] V). The

Ar-He mixture is varied between 1% and 100% to analyze the effect of Ar-fraction

on the metastable density. A comparison between the zero and one-dimensional

models is performed in the bulk plasma at a point midway between the plates in

the steady-state limit. The one-dimensional model requires roughly 2500 cycles to

reach a steady-state defined by the convergence criterion outlined in Lymberopoulos

and Economou [1993]. Zero-dimensional simulations are performed through 0.3 ms,

allowing ample time for all densities and discharge parameters to reach a steady-

state. A constant gas temperature of 440 K is used for all simulations, matching

the experimentally measured temperatures based on observed Doppler widths [Eshel

et al., 2016].
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Fluorescence measurements of the discharge scenario indicate an α-mode dis-

charge, as displayed in Figure 48. Simulated fluorescence is estimated by multiplying

the Ar∗ densities predicted by the one-dimensional fluid model with their respective

A-coefficients and averaging over a cycle. The fluorescence trends in the peak and

bulk plasma are in agreement, showing a slight decrease as the Ar-fraction is increased

from 10 to 25%. Additionally, the simulated and measured trend of sheath fluores-

cence as a function of Ar-fraction are displayed in Figure 49. While the simulated

peak fluorescence is overestimated for the pure Ar scenario, the general trends as a

function of Ar-fraction are in agreement. A hybrid fluid-kinetic model would provide

a better estimate of sheath behavior, and would likely improve the agreement between

measurement and simulation.

Cycled averaged spatial profiles from the one-dimensional simulations are dis-

played in Figures 50-52. While the electron temperature shows a variation of ap-

proximately 0.5-1 eV during an RF cycle, the Ar(1s5) density is effectively constant

throughout the cycle, and the electron density only shows variation in the sheaths.

Peak metastable densities on the order of 1012 cm−3 are observed near the sheaths,

with the bulk plasma densities an order of magnitude lower (Figure 50). For the mix-

tures simulated by the fluid model at 300 Torr, the 25% Ar in He mixture produces

the largest metastable densities in the sheaths, with a peak of approximately 5×1012

cm−3. In the bulk plasma, the 15% Ar-fraction produces the largest metastable den-

sities, with magnitudes near 4× 1011 cm−3.

Electron densities are observed to increase with increasing Ar-fraction (Figure 51).

Additionally, the peak to bulk plasma ratio increases with Ar-fraction. Electron

temperatures in the bulk plasma also display an increase with increasing Ar-fraction

(Figure 52), but an opposite trend is observed in the sheaths. Peak sheath voltages,

Vs, are observed in the range of 240-250 V, providing peak sheath E/N magnitudes
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Figure 48. Normalized fluorescence measurements and one-dimensional simulations
for 10 and 25% Ar-fractions at 300 Torr. Both the measurements and simulations are
indicative of an α-mode discharge.
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Figure 49. Normalized sheath fluorescence measurements and simulations for a variety
of Ar-He mixtures at 300 Torr.
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Figure 50. One-dimensional Ar(1s5) density simulations for varying Ar-He mixtures at
300 Torr.

in the range of 125-155 Td.

A comparison of the bulk plasma electron densities simulated by the zero and one-

dimensional models is displayed in Figure 53. Both models predict similar densities

and trends, increasing as the partial-pressure of Ar increases for Ar-fractions above

∼ 15%. The increase in electron density (and current density) with increasing Ar-

fraction corresponds to a decrease in steady-state E/N for the bulk plasma due to

an increase in dielectric charging and sheath voltage (Figure 54). As the Ar-fraction

increases so does the Ar∗2 density, and the dominant ionization mechanism shifts from

e− + Ar → 2e− + Ar+ to e− + Ar∗2 → 2e− + Ar+
2 . The electron energy required to

ionize Ar∗2 is approximately 3.4 eV, compared to the 15.8 eV required to ionize ground

state Ar. However, Ar∗2 formation via Ar(1s5) + Ar + M → Ar∗2 + M is dependent

on metastable densities, which require electron energies of 11.6 eV for production

through e− + Ar → e− + Ar(1s5). Therefore, a better comparison of the energies

required for the two different ionization mechanisms is between the energy required
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Figure 51. One-dimensional electron density simulations for varying Ar-He mixtures
at 300 Torr.
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Figure 52. One-dimensional electron temperature simulations for varying Ar-He mix-
tures at 300 Torr.
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for Ar(1s5) excitation, 11.6 eV, and the energy required for ionization of ground state

Ar, 15.8 eV, resulting in a difference of 4.2 eV. The reduction in energy required for

ionization via e−+Ar∗2 → 2e−+Ar+
2 allows for a lower steady-state E/N at larger Ar-

fractions, which in turn requires a larger electron density (current density) to reach

the steady-state.

The bulk plasma electron temperature increases with increasing Ar-fraction, in

contrast to the E/N (Figure 55). This increase in Te with a reduction of E/N

can be described by Figure 36, where the mapping of E/N to Te is shown to be

mixture dependent. For E/N magnitudes below 6 Td, Te increases as the Ar-fraction

increases. The electron temperature (or E/N) predicted using the zero-dimensional

DC approach is larger than the average (RMS) values of the one-dimensional RF

model, but less than the peaks. While the time-varying electric field in the one-

dimensional model allows the electron temperature (E/N) to vary over a cycle, the

DC approach maintains a constant electron temperature (E/N) at steady-state.

In the one-dimensional RF model, ionization rates vary over the RF cycle following

the change in electron temperature (or E/N). The zero-dimensional effective DC

approach maintains a constant ionization rate due to a constant electron temperature

(E/N) at steady-state. Ionization rates for the two approaches are displayed in Figure

56, which shows an increase in ionization rates as the Ar-fraction is increased matching

the trend in electron density. While the ionization rates for the one-dimensional RF

model vary over the cycle, the cycle averaged values are close in magnitude to the

constant ionization rates from the zero-dimensional effective DC model. Differences

in the ionizations rates correspond to differences in electron loss rates, which are

functions of Te and the electron/ion densities.

The two models predict a similar trend in metastable density, with peaks near 15%

Ar in He followed by a reduction in density as Ar-fraction is increased. Metastable
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Figure 53. Bulk plasma electron densities for varying Ar-He mixtures at 300 Torr
using both the zero and one-dimensional models.
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Figure 54. Bulk plasma E/N magnitudes for varying Ar-He mixtures at 300 Torr using
both the zero and one-dimensional models. The triangles represent the RMS E/N and
the bars represent the maximum E/N attained over a cycle.
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Figure 55. Bulk plasma electron temperatures for varying Ar-He mixtures at 300 Torr
using both the zero and one-dimensional models. The triangles represent the cycle-
averaged Te and the bars correspond to the minimum and maximum values obtained
over a cycle.
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Figure 56. Bulk plasma ionization rates for varying Ar-He mixtures at 300 Torr using
both the zero and one-dimensional models. The triangles represent the cycle-averaged
ionization rates and the bars correspond to the minimum and maximum values obtained
over a cycle.
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density trends follow the trends in E/N , which also show peaks near the 15% Ar-

fraction. Excitation rate coefficients for metastable production via Ar + e− →

Ar(1s5) + e− are highly dependent on E/N , which explains the similarity of the

E/N and Ar(1s5) density trends over Ar-fraction.

Varying Pressure.

To analyze the effect of pressure on the metastable density, an Ar-fraction of 15%

is simulated for pressures in the range of 200-500 Torr. As pressure is increased,

the electron loss rate due to ambipolar diffusion decreases. Additionally, the role

of ionization through e− + Ar∗2 → 2e− + Ar+
2 increases with pressure, accounting

for an overall decrease in steady-state Te and E/N as shown in Figure 58. The

electron/current density required to reduce the initial E/N to the steady-state E/N

decreases with pressure due to an increased gas density which reduces the initial E/N

magnitude (Figure 59). The decrease in electron density and electron temperature

combined with an increase in the metastable loss rates, primarily through excimer

formation via Ar(1s5)+Ar+M → Ar∗2 +M , causes an overall decrease in metastable

density with increasing pressure, as displayed in Figure 60. The quadratic dependence

of the metastable loss rates on the pressure is larger than the linear increase in Ar

density assisting with metastable production rates through Ar + e− → Ar(1s5) + e,

which would decrease the steady-state metastable density even if the electron density

and temperature were to remain constant.

Bulk plasma electron densities for the zero-dimensional DC model are displayed

with the one-dimensional results in Figure 61. Both models predict a nearly constant

electron density from 200 to 300 Torr followed by a decrease from 300 to 500 Torr.

The electron density is slightly overestimated by the zero-dimensional model at all

pressures. A small decrease in E/N and Te is observed as pressure is increased, with
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Figure 57. Bulk plasma Ar(1s5) densities for varying Ar-He mixtures at 300 Torr using
both the zero and one-dimensional models.
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Figure 58. One-dimensional electron temperature simulations for varying pressures in
a 15% Ar in He mixture.
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Figure 59. One-dimensional electron density simulations for varying pressures in a
15% Ar in He mixture.
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Figure 60. One-dimensional Ar(1s5) density simulations for varying pressures in a 15%
Ar in He mixture.
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both models in agreement (Figures 62 and 63). The Te (or E/N) magnitude for the

zero-dimensional DC approach is between the average (RMS) and maximum of the

time-varying one-dimensional approach.

The decrease in metastable density with increasing pressure is overestimated by

the zero-dimensional DC approach, mainly due to an overestimation at pressures

below 400 Torr (Figure 64). While the one-dimensional model predicts a decrease

from 4.9× 1011 to 2.5× 1011 cm−3 as the pressure is increased from 200 to 500 Torr,

the zero-dimensional model predicts a factor of 3 decrease from 7.0×1011 to 2.2×1011

cm−3. However, both models show the same trend with decreasing metastable density

as the pressure is increased.

Zero-Dimensional Simulations.

Extending the zero-dimensional simulations to the entire range of Ar-He mixtures

and pressures provides the bulk plasma metastable density profile displayed in Fig-

ure 65. The trend of Ar(1s5) as a function of Ar-fraction displayed in Figure 57 can

be seen for pressures near 300 Torr in Figure 65. As pressure is increased, three-body

collisions via Ar(1s5)+Ar+Ar → Ar∗2 +Ar, which is estimated to have twice the rate

constant of the Ar(1s5)+Ar+He→ Ar∗2 +He analog [Demyanov et al., 2013], causes

a drastic decrease in metastable densities for Ar rich mixtures. Increased Ar∗2 produc-

tion at elevated pressures causes the peak E/N to occur at lower Ar-fractions due to

ionization contributions from Ar∗2 + e− → Ar+
2 + 2e−. This shift in E/N corresponds

to a shift in metastable production, causing the peak metastable density to occur

at lower Ar-fractions as the pressure is increased. At 200 Torr the peak metastable

density occurs near a 15% Ar-fraction, while the peak is shifted to approximately

10% at 500 Torr.

Electron densities follow the trend observed in Figure 53 as a function of Ar-
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Figure 61. Bulk plasma electron densities for varying pressures in a 15% Ar in He
mixture using both the zero and one-dimensional models .
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Figure 62. Bulk plasma E/N magnitudes for varying pressures in a 15% Ar in He
mixture using both the zero and one-dimensional models. The triangles represent the
RMS E/N and the bars represent the maximum E/N attained over a cycle.
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Figure 63. Bulk plasma electron temperatures for varying pressures in a 15% Ar in
He mixture using both the zero and one-dimensional models. The triangles represent
the cycle-averaged Te and the bars correspond to the minimum and maximum values
obtained over a cycle.
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Figure 64. Bulk plasma Ar(1s5) densities for varying pressures in a 15% Ar in He
mixture using both the zero and one-dimensional models.
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Figure 65. Bulk plasma Ar(1s5) densities for varying pressures and Ar-fractions using
the zero-dimensional effective DC model.

fraction at all pressures (Figure 66). While the electron density shows a slight de-

crease with increasing pressure at lower Ar-fractions, a small increase with pressure

is observed for Ar rich mixtures. Similar to the 15% Ar-fraction scenario, a slight de-

crease in electron temperature is observed for all Ar-fractions as pressure is increased

(Figure 67). The general trend with Ar-fraction is also maintained over all pressures.

Bulk plasma reduced electric fields show a peak near 15% Ar-fraction at 200 Torr

with a shift towards lower Ar-fractions as the pressure is increased, as displayed in

Figure 68. Additionally, the E/N magnitude is reduced as the pressure is increased.

The metastable excitation rates are highly dependent on E/N , which is apparent

based on the similarities in the E/N trends (Figure 68) and the Ar(1s5) density

trends (Figure 65)
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Figure 66. Bulk plasma electron densities for varying pressures and Ar-fractions using
the zero-dimensional effective DC model.

Figure 67. Bulk plasma electron temperatures for varying pressures and Ar-fractions
using the zero-dimensional effective DC model.
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Figure 68. Bulk plasma reduced electric fields for varying pressures and Ar-fractions
using the zero-dimensional effective DC model.

Varying Voltage.

To understand the effect of applied voltage on the metastable density profiles,

the one-dimensional fluid model is used for a 15% Ar in He mixture at a pressure of

200 Torr for a variety of applied voltages. The peak electrode voltage is increased

from 500 to 1750 V in 250 V steps. Gas heating is ignored to simplify the analysis.

However, the inclusion of gas heating would provide a more accurate estimation of

metastable densities as a function of voltage and should be taken into account during

future calculations.

While the previous analyses produced α-mode discharges (based on the measured

fluorescence profiles), this increase in voltage will eventually cause a transition to the

γ-mode if the electron/current density reaches a critical value. The critical electron

density is the electron density which produces a sheath voltage large enough to cause

a breakdown in the sheaths (see Raizer et al. [1995] for more detail). Similar to a DC
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glow discharge, the breakdown voltage in the sheaths is dependent on the pressure-

distance product, as displayed in the Paschen curves (Figure 4). Sheath voltages

are dependent on the current density, j, and amplitude of sheath oscillations, A:

Vs = 2Aj/ωε0. The amplitude of sheath oscillation is also dependent on electron

density and applied voltage (Equation 57). From the sheath voltage dependence

on the electron density through the current density, the critical electron density is

attained when the sheath voltage is equal to the breakdown voltage associated with

the sheath thickness:

ne,critical =
Btpε0

qeA (Ct + ln 2pA)
, (127)

Ct = ln

(
At

ln (1 + 1/γ)

)
, (128)

where Bt = 176.0 V/cm · Torr is the Townsend B coefficient, At = 11.5 1/cm · Torr is

the Townsend A coefficient, and γ is the secondary emission coefficient [Raizer et al.,

1995].

For the geometry of the clam shell electrode experiment with an applied peak

voltage of 500 V, the critical electron density is calculated to be 4.4 × 1011 cm−3 at

a pressure of 200 Torr for pure Ar. This critical electron density is a function of

both pressure and applied voltage. As the pressure is increased, the critical electron

density increases due to an increase in the pressure-distance product (Figure 69). The

critical electron density increases from approximately 1.1× 1011 cm−3 at 100 Torr to

5.4× 1012 cm−3 at 700 Torr. Additionally, the sheath thickness corresponding to the

critical electron density decreases as the pressure is increased (Figure 70).

At a constant pressure, the critical electron density is a function of the effec-

tive applied voltage. As the voltage increases, the critical electron density decreases

(Figure 71). For a pressure of 200 Torr, the critical electron density decreases from
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Figure 69. Critical electron density required for an α to γ-mode transition for an
applied voltage of 500 V.
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Figure 70. Sheath thickness corresponding to the critical electron density required for
an α to γ-mode transition for an applied voltage of 500 V.
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5.9× 1012 cm−3 at 200 V to 4.4× 1011 cm−3 at 500 V.

To analyze the α to γ-mode transition, the effective voltage across the plasma, Vp,

is defined by:

Vp = Vs + Vb = Vapp − Vd, (129)

which provides the voltage applied to the discharge. In this scenario, the voltage drop

due to dielectric charging, Vd, acts a ballast resistor by lowering the effective voltage

as the current density is increased. Following the example of Balcon et al. [2008], the

peak current density is analyzed as a function of Vp. An α-mode is characterized by

positive, linear differential conductivity where the current density increases with an

increasing Vp. After the transition to a γ-mode, the differential conductivity becomes

negative, showing an increase in current for a decrease in Vp.

For a secondary electron emission coefficient of 0.01 estimated for Pyrex tubes the

current-voltage characteristic of a 15% Ar-fraction, 200 Torr discharge is displayed

in Figure 72. The increase in current is positive and linear, indicating an α-mode

discharge at all voltages. The estimated critical electron density for an effective

voltage of 420 V, corresponding to Vp for the 1750 V scenario, is approximately

6.1 × 1011 cm−3. A simulated bulk plasma electron density of 9.1 × 1011 cm−3 for

the 1750 V scenario is larger than the estimated critical electron density, but no α

to γ-mode transition has occurred. The peak current density of approximately 200

mA/cm2 is not large enough to cause a transition for a secondary coefficient of 0.01,

according to the simulations.

The average applied power, 〈Papp〉, commonly referred to as the power for an RF

circuit, is calculated as the average power delivered over a cycle:

〈Papp〉 = IrmsVrms cos θ, (130)
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Figure 71. Critical electron density required for an α to γ-mode transition at a pressure
of 200 Torr.

Figure 72. Peak current as a function of the effective voltage across the plasma, Vp,
for a secondary emission coefficient of 0.01.
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where Irms is the RMS current, Vrms is the RMS applied voltage, and θ is the phase

difference between the current and voltage. The peak delivered power can be much

larger than the average applied power, as displayed in Figure 73. For an applied

voltage of 500 V, 〈Papp〉 is approximately 9 W, with a current-voltage phase difference

of 73 degrees and a peak delivered power of 40 W. For the 1750 V scenario, an average

power of approximately 120 W corresponds to a phase difference of 81 degrees and a

peak power of 870 W.
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Figure 73. Delivered power over one RF cycle for a secondary emission coefficient of
0.01. The phase difference between the current and applied voltage is represented by
θ.

Metastable densities show a large increase as the applied voltage is increased, as

displayed in Figure 75. The bulk plasma Ar(1s5) density increases from approxi-

mately 4.9 × 1011 cm−3 at 500 V to 2.7 × 1012 cm−3 at 1750 V. As the voltage is

increased, the bulk plasma metastable density approaches the desired value of 1013

cm−3. Peak metastable densities range from 5.6 × 1012 cm−3 for the 500 V scenario

to 4.1× 1013 cm−3 for the 1750 V scenario. While the increase in metastable density
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Figure 74. Cycle averaged electron density for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.01.

with increasing voltage is promising, continuing to increase the voltage will eventually

lead to thermal instabilities that terminate laser operation.

Bulk plasma electron temperatures are approximately 1.8 eV for all applied volt-

ages, as displayed in Figure 76. However, the Te in the sheaths shows a large increase

with applied voltage, increasing from 4.6 to 8.6 eV as the applied voltage increases

from 500 to 1750 V. The RMS E/N magnitudes show a similar behavior, with bulk

plasma values around 4.3 for all applied voltages (Figure 77). Similar to the electron

temperature in the sheaths, the RMS E/N increases from a peak of ∼ 120 Td for the

500 V scenario to ∼ 540 Td for the 1750 V scenario.

To induce an α to γ-mode transition, the analysis as a function of applied voltage

is repeated using a secondary electron emission coefficient of 0.1. An increased sec-

ondary coefficient allows for an increase in the number of secondary electrons, which

are required to maintain a γ-mode discharge. While the secondary coefficient does
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Figure 75. Cycle averaged metastable densities for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.01.
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Figure 76. Cycle averaged electron temperature for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.01.
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Figure 77. RMS E/N magnitudes for a variety of applied voltages at a pressure of
200 Torr and a 15% Ar-fraction using a 15% Ar-fraction using a secondary emission
coefficient of 0.01.

not correspond to the Pyrex tube used in the experiment, it allows for an analysis of a

γ-mode in an Ar-He mixture. The current voltage characteristic is displayed in Figure

78, showing an α to γ transition at a current of ∼ 175 mA/cm2, corresponding to the

applied voltage of 1400 V. As the applied voltage is increased above this threshold,

the effective applied voltage, Vp, decreases while the current increases, providing the

negative differential conductivity characteristic of the onset of a γ-mode discharge

[Balcon et al., 2008].

The average delivered power, 〈Papp〉, ranges from 14 W for the 500 V scenario

to 127 W for the 1750 V scenario (Figure 78). Peak powers range from 60 W to

1000 W as the applied voltage increases from 500 to 1750 V, as displayed in Figure

79. While the peak effective voltage decreases during an α to γ-mode transition, the

increase in applied voltage and current causes an increase in the applied power. In

the γ-mode, as current density increases drastically for relatively small increases in
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Figure 78. Peak current as a function of the effective voltage across the plasma, Vp,
for a secondary emission coefficient of 0.1.

applied voltage, the applied power will increase significantly as the applied voltage is

increased.

The estimated critical electron density for an effective voltage of 240 V and a

secondary emission coefficient of 0.1 is approximately 9.8×1011 cm−3, which is greater

than the simulated bulk plasma electron density of 7.9 × 1011 cm−3 for the 1400 V

applied voltage scenario (Figure 80). However, the electron density near the sheaths

is approximately 1.9× 1012 cm−3, which is greater than the critical electron density.

The spatial average of the cycle averaged electron density is approximately 1.0× 1012

cm−3, which is within 3% of the estimated critical electron density.

Bulk plasma Ar(1s5) densities range from 7.1×1011 cm−3 for an applied voltage of

500 V to 2.9×1012 cm−3 for an applied voltage of 1750 V (Figure 81). The metastable

density of the 1750 V γ-mode is slightly larger than the 2.7× 1012 cm−3 bulk plasma

density obtained for the 1750 V α-mode calculated using a smaller secondary emission

coefficient. Sheath densities range from 6.9× 1012 cm−3 for an applied voltage of 500
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Figure 79. Delivered power over one RF cycle for a secondary emission coefficient of
0.1. The phase difference between the current and applied voltage is represented by θ.
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Figure 80. Cycle averaged electron density for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.1.
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V to 5.6 × 1013 cm−3 for an applied voltage of 1750 V. The sheath density for the

1750 V γ-mode is about 40% larger than the sheath densities for the 1750 V α-mode.

This onset of the γ-mode appears to cause a large increase in sheath densities, with

a relatively small increase in bulk plasma densities.
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Figure 81. Cycle averaged metastable densities for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.1.

Similar to the simulations using a secondary emission coefficient of 0.01, the bulk

plasma electron temperatures are all approximately 1.8 eV, as displayed in Figure

76. Sheath electron temperatures range from 4.7 eV for the 500 V scenario to 6.9

eV for the 1750 V scenario. No noticeable change in electron temperature profile is

visible for the γ-mode scenarios compared to the α-mode profiles. Reduced electric

field magnitudes in the bulk plasma are approximately 4.3 Td for all applied voltages.

The RMS E/N in the sheaths range from 160 Td for the 500 V scenario to 500 Td

for the 1750 V scenario.

Bulk plasma metastable and electron densities as a function of applied voltage for
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Figure 82. Cycle averaged electron temperature for a variety of applied voltages at a
pressure of 200 Torr and a 15% Ar-fraction using a secondary emission coefficient of
0.1.
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Figure 83. RMS E/N magnitudes for a variety of applied voltages at a pressure of 200
Torr and a 15% Ar-fraction using a secondary emission coefficient of 0.1.
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the two secondary electron emission coefficients are displayed in Figures 84 and 85.

The densities are slightly larger for the 0.1 secondary coefficient over all applied volt-

ages, and no noticeable change occurs during the γ-mode onset. The dielectric barri-

ers covering the electrodes allows for a subnormal γ-mode where the current densities

are lower than bare electrode normal current densities characteristic of the γ-mode

due to the dielectric surface charge dependence on the current density [Raizer et al.,

1995]. Additionally, a two-dimensional simulation is required to capture the trans-

verse charge diffusion responsible for stabilizing the normal current density [Raizer

et al., 1995]. As a result, our simulated one-dimensional subnormal current densities

don’t show the large increase in electron density expected for the bare electrode γ-

mode onset. However, the two-term approximation to the Boltzmann equation fails

at the non-uniform, elevated electric fields produced in the sheaths of a γ-mode, which

impacts the estimated density profiles.

A hybrid kinetic-fluid model would provide a better estimate of the densities

produced in a γ-mode discharge, and should be implemented for further exploration

of the γ-mode. Gas heating should also be taken into account due to the increase in

current density and associated Joule heating expected as the voltage is increased. This

increase in gas heating increases the likelihood of thermal instability formation, which

places limitations on the maximum applied voltage. The increase in Ar(1s5) densities

observed with increasing voltage will eventually meet an instability threshold, and

continuing to increase the applied voltage will render the discharge unusable as a

large volume uniform source of metastable densities in an OPRGL.

Experimental data for the α to γ-mode transition in pure Ar at atmospheric

pressures is sparse, which may be due to the likelihood of evolving into a filamentary

mode during the α to γ-mode transition [Balcon et al., 2008]. This filamentary mode

has been observed for pulsed RF discharges with an applied voltage of 1400 V peak to
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Figure 84. Cycle averaged bulk plasma metastable densities as a function of applied
voltage for secondary electron emission coefficients (SEEC) of 0.1 and 0.01. The red
dashed vertical line represents the onset of the γ-mode for the secondary coefficient of
0.1.
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Figure 85. Cycle averaged bulk plasma electron densities as a function of applied
voltage for secondary electron emission coefficients (SEEC) of 0.1 and 0.01. The red
dashed vertical line represents the onset of the γ-mode for the secondary coefficient of
0.1.
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peak and a pressure-distance product of 76 Torr · cm for a single-barrier (one electrode

covered with a dielectric) RF-DBD [Balcon et al., 2007]. A separate analysis using a

double-barrier (both electrodes covered with a dielectric) RF-DBD with pure Ar and

a similar pressure-distance product measured a stable α-mode discharge up to 1400

V peak [Bin et al., 2011]. The inclusion of a dielectric barrier across each electrode

increases the voltage threshold due to a reduction in the effective voltage across the

plasma caused by dielectric charging. Measurements of the α to γ-mode transition

in an Ar-He mixture at high pressures for a double-barrier RF-DBD could not be

found in the literature. As a result of the lack of experimental data, a comparison to

experiment cannot be performed.

While the normal γ-mode discharge is enticing because of the large electron densi-

ties expected, which would increase metastable production rates, care must be taken

when using a γ-mode discharge for a gas laser. The excess current and associated

Joule heating in the γ-mode increases the likelihood of thermal instabilities and non-

uniformity [Garscadden et al., 1991]. The increase of energetic electrons in the γ-mode

is known to decrease CO2 laser efficiency [YATSENKO, 1992], but the dependence

of an OPRGL on metastable excitation would benefit from the energetic electrons.

However, the current density required to fill the area of an electrode in the γ-mode

would increase the power requirements for a large volume discharge. Additionally, the

transition to a filamentary mode observed during the γ-mode onset at high pressures

is problematic for use as a laser medium and should be analyzed in more detail.

4.3 Ring Electrodes Experiment

In addition to the experiment performed using the clam shell electrodes, a separate

RF-DBD experiment was performed using ring electrodes. Zero-dimensional simula-

tions of the bulk plasma are performed for the ring electrode scenario to compare

136



www.manaraa.com

against measured Ar(1s5) and Ar(1s4) densities.

Description of Experiment.

The ring electrode RF-DBD experiment described in Eshel et al. [2016] used the

cylindrical geometry and experimental configuration displayed in Figures 86 and 87.

A flow rate of 100 sccm and a power of 10 W were used to produce discharges with

variable Ar-He mixtures at several pressures. Ar(1s5) and Ar(1s4) density measure-

ments were extracted from the absorbance spectra [Eshel et al., 2016]. Doppler widths

from the spectra measurements indicated a temperature of 440± 20 K, over all pres-

sures and Ar-fractions. In addition to the density and temperature measurements,

the total current was measured, providing a detailed analysis of discharge behavior

as Ar-fraction and pressure were varied.

Figure 86. A diagram of the ring electrode RF-DBD discharge tube used for the
experimental portion of this analysis.

Zero-Dimensional Simulations.

ZDPlasKin is used to perform zero-dimensional simulations of the ring electrode

RF-DBD for a variety of Ar-fractions and pressures ranging from 10 to 160 Torr,
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Figure 87. A picture of the ring electrode RF-DBD experimental setup during a
discharge.

following the outline in Section 4.1. For the complicated geometry of the RF-DBD,

the zero-dimensional model requires multiple assumptions, including the assumption

of a parallel plate geometry (which is not accurate). However, the goal of the analysis

is to determine the parametric dependence of the Ar(1s5) and Ar(1s4) densities on

the Ar-fraction and pressure, which can be accomplished by a zero-dimensional model

with limited computation expense. An α-mode discharge is assumed for calculation

of the sheath voltages. Additionally, a voltage of 400 V peak is used to used for all

pressures and Ar-fractions.

Varying Pressure.

Simulated currents show an increase with pressure from 10 to 50 Torr, followed by

a decrease as pressure is increased from 50 to 160 Torr (Figure 88). The current for

the 25% Ar-fraction is slightly larger than the other Ar-fractions at lower pressures.

However, the currents for the different Ar-fractions are within 20% of each other over
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all pressures.
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Figure 88. Simulated RMS currents as a function of pressure for the ring electrode
RF-DBD.

Current density follows j = qeneµeE, and because µe is inversely proportional

to the neutral gas density, j ∝ ne × E/N . Therefore, the current density versus

pressure follows the product of electron density and E/N versus pressure. Simulated

electron densities show a large increase from 10 to 50 Torr, remaining nearly constant

from 50 to 100 Torr, followed by a large decrease from 100 to 160 Torr (Figure 89).

Conversely, simulated E/N values show a large decrease from 10 to 50 Torr, followed

by a slight decrease from 50 to 160 Torr (Figure 90). The product of the two provides

the simulated current profile over pressure.

To understand the E/N and ne behavior as a function of pressure, it is helpful to

analyze the steady-state electron production and loss rates as a function of pressure.

For the relatively small cavity size and pressures studied in the experiment, the domi-

nant loss mechanism for electrons is ambipolar diffusion to the walls. At steady-state,

the electron production and loss rates are equal, following Equation 28. Ignoring the
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Figure 89. Simulated electron density as a function of pressure for the ring electrode
RF-DBD.
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Figure 90. Simulated E/N as a function of pressure for the ring electrode RF-DBD.
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recombination rate, we find

νi (E/N) =
Da

Λ2
, (131)

which is independent of the electron density. The ambipolar diffusion coefficient is

inversely proportional to the neutral gas density, indicating a strong decrease with

increasing pressure. This decrease in the loss rate allows the ionization rate, and

hence E/N , to decrease with increasing pressure, which matches the simulations.

The bulk plasma E/N is related to the electron density through the current den-

sity. As the current density increases, more charge is collected on the surface of the

dielectrics, and the voltage across the bulk plasma is reduced. Ignoring the potential

drop due to the sheaths, the voltage across the bulk plasma follows from Equation

54:

V 2
b = V 2

app − V 2
d ,

= V 2
app −

(
2δj

εdω

)2

,

= V 2
app −

(
2δq2

ene
εdωmeσmvr

)2(
E

N

)2

b

. (132)

Dividing by d2N2 and solving for ne, we obtain

ne =
εdωmeσmvrNd

2δq2
e

√√√√(E/N)2
applied

(E/N)2
b

− 1, (133)

=⇒ ne ∝ p

√√√√(E/N)2
applied

(E/N)2
b

− 1, (134)

where p is the neutral gas pressure, and the terms excluded in Equation 134 are

assumed to be constant over pressure. At steady-state, the electron density depends

on the product of pressure and the square root of the ratio of the applied E/N ,

(E/N)applied, to the steady-state E/N in the bulk plasma, (E/N)b. As determined
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above, the steady-state E/N in the bulk plasma depends on the loss rates, which also

depend on pressure. This relationship between E/N and ne provides the simulated

trends in Figures 89 and 90.

Measured Ar(1s4) densities follow the same trend as the simulated E/N , as dis-

played in Figure 91. While the measured Ar(1s4) densities show a large decrease with

pressure, the simulated densities predict an increase from 10 to 15 Torr, followed by

a reduction with pressure that matches the measured decrease. Additionally, the

measurements for the 5 and 10% mixtures are close in magnitude over all pressures

while the simulation predicts an increase in density for the 10% mixture. Both the

measurements and simulations show Ar(1s4) densities on the order of 1011 cm−3.

Metastable simulations follow the measured trend with pressure, decreasing as

pressure is increased, similar to the E/N trends (Figure 92). The major difference

between the measurements and simulations is the trend from 10 to 25% Ar-fraction:

measurements show a decrease in density from 10 to 25% while the simulations show

an increase.

Varying Ar-He Mixture.

Repeating the analysis with Ar-fraction as the independent variable, the simulated

current shows a minimum in the Ar-fraction range of 10-15% (Figure 93). Current

density is responsible for decreasing the bulk plasma voltage through sheath formation

and dielectric charging. A larger current corresponds to a lower bulk plasma voltage,

which in turn reduces the E/N . This relationship is present in Figure 94, where the

peak E/N magnitudes occur at the current minimums.

Qualitatively, the Ar(1s4) measurements agree with the simulations over the range

of measured Ar-fractions (Figure 95), showing an increase in density with increasing

Ar-fraction. The simulations show a gradual increase with Ar-fraction, while the
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Figure 91. Measured and simulated Ar(1s4) densities as a function of pressure for the
ring electrode RF-DBD.
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Figure 92. Measured and simulated Ar(1s5) densities as a function of pressure for the
ring electrode RF-DBD.
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Figure 93. Simulated RMS currents as a function of Ar-fraction for the ring electrode
RF-DBD.
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Figure 94. Simulated E/N as a function of Ar-fraction for the ring electrode RF-DBD.
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measurements show a large increase from 2.5 to 5% followed by a slight increase to

10%.

Metastable measurements show peaks at 10% Ar-fraction for all pressures followed

by a large decrease as the Ar-fraction is increased to 25% (Figure 96). The simulated

metastable density does not predict the peak at 10%, but instead predicts peaks near

20% Ar-fraction. The largest difference between measurement and simulation is the

sharp drop in metastable densities measured from 10 to 25% Ar-fraction, which is

not observed in the simulations.
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Figure 95. Measured and simulated Ar(1s4) densities as a function of Ar-fraction for
the ring electrode RF-DBD.
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Figure 96. Measured and simulated Ar(1s5) densities as a function of Ar-fraction for
the ring electrode RF-DBD.

4.4 Simplified Model

Model Description.

To investigate the key kinetics controlling metastable density as a function of

Ar-fraction and pressure, a simplified model of the bulk plasma in an RF-DBD is

developed. Instead of using the time dependent approach employed by the previous

models in this analysis, a steady-state approach is implemented using a limited set of

species and reactions. Only the key reactions and species pertinent to the metastable

density are maintained, providing a simplified kinetic model which maintains the

trends predicted by the full zero-dimensional model implemented through ZDPlasKin.

The set of excited/ion species used in the simple model are: Ar(1s5), Ar∗2, Ar+
2 , and

Ar+. A list of the reactions is displayed in Table 8. Additionally, ambipolar diffusion
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is taken into account, following

νdiff =
µ+Te
Λ2

, (135)

where νdiff is the diffusion loss frequency, µ+ is the ion mobility calculated using

Blanc’s Law, Te is the electron temperature in eV, and Λ = 0.38/π ≈ 0.12 cm is the

characteristic length of the cavity for the clam shell electrode experiment assuming a

parallel plates discharge with a gap length of 0.38 cm.

Table 8. A list of the reactions and rate coefficient labels used in the simple RF-DBD
model.

Rate Coefficient
Label Reaction

k1 Ar + e− → Ar+ + e− + e−

k2 Ar(1s5) + e− → Ar+ + e− + e−

k3 Ar∗2 + e− → Ar+
2 + e− + e−

k4 Ar(1s5) + Ar(1s5)→ Ar+ + Ar + e−

k5 Ar+
2 + e− → Ar + Ar

k6 Ar + e− → Ar(1s5) + e−

k7 Ar(1s5) +He→ Ar +He
k8 Ar(1s5) + Ar → Ar + Ar
k9 Ar(1s5) + Ar +He→ Ar∗2 +He
k10 Ar(1s5) + Ar + Ar → Ar∗2 + Ar
k11 Ar∗2 + e− → Ar + Ar + e−

k12 Ar∗2 → Ar + Ar + ~ω
k13 Ar+ + Ar +He→ Ar+

2 +He
k14 Ar+ + Ar + Ar → Ar+

2 + Ar
k15 Ar+

2 + e− → Ar+ + Ar + e−

At steady-state, there is no variation in the species densities, providing the fol-
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lowing coupled non-linear equations:

k1[Ar]ne + k2[Ar(1s5)]ne + k3[Ar∗2]ne + k4[Ar(1s5)][Ar(1s5)] =
µ+Te
Λ2

ne + k5[Ar+
2 ]ne,

k6[Ar]ne = k7[Ar(1s5)][He] + k8[Ar(1s5)][Ar] + k9[Ar(1s5)][Ar][He] + k10[Ar(1s5)][Ar][Ar],

+ k2[Ar(1s5)]ne + k4[Ar(1s5)][Ar(1s5)],

k9[Ar(1s5)][Ar][He] + k10[Ar(1s5)][Ar][Ar] = (k3 + k11)[Ar∗2]ne + k12[Ar∗2],

k13[Ar+][Ar][He] + k14[Ar+][Ar][Ar] + k3[Ar∗2]ne = (k5 + k15)[Ar+
2 ]ne +

µ+Te
Λ2

[Ar+
2 ],

[Ar+] + [Ar+
2 ] = ne, (136)

where the final equation is based on the assumption of an electrically neutral bulk

plasma. The electron density, ne, is coupled to bulk plasma E/N through the follow-

ing equations:

(
qeneµe
ωde

)2(
2A

ε0
+

2δ

εd

)2

+ 1 =
(E/N)2

applied

(E/N)2
b

(137)

A2

[(
ω2 − 2Aneq

2
e

meε0de

)2

+ ω2ν2
m

]
=

(
qeVapp
mede

)2

, (138)

where (E/N)applied is the applied E/N and (E/N)b is the bulk plasma E/N . These

equations are obtained by expressing the current density and plasma frequency in

Equations 54-57 in terms of the electron density and dividing Equation 54 by d2
eN

2

to convert the voltage to E/N . The solution to these coupled equations provides the

electron density required to produce an (E/N)b for a given (E/N)applied. At steady-

state, (E/N)b is the magnitude required to maintain bulk plasma ionization rates

equal to the electron loss rates and is a function of pressure and Ar-fraction.

To include the ambipolar diffusion loss rate, Te is required and can be calculated

from (E/N)b. The conversion is dependent on the Ar-fraction due to the change in

the EEDF observed with changes in mixture. To calculate the conversion, BOLSIG+
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is run for Ar-fractions from 1 to 100% for a variety of electron temperatures, providing

the E/N profile displayed in Figure 97. This one-to-one mapping between E/N and

Te for a given Ar-fraction allows the model to solve for Te as a proxy for (E/N)b.

In addition to the relationship between E/N , Te, and Ar-fraction, the electron

impact rate coefficients and electron mobility are also dependent on Te (or E/N) and

Ar-fraction. Electron impact rate coefficients are required for the electron impact

reactions in Equation 136, and electron mobilities are required to solve Equation 137.

BOLSIG+ is used to calculate the rate coefficients and mobilities, providing results

as a function of Te and Ar-fraction, which are used in the steady-state calculations.

The BOLSIG+ calculated rate coefficients, mobilities, and E/N to Te conversions

are used as inputs to the model in addition to an applied voltage, Ar-fraction, and

pressure. For a user defined voltage, Ar-fraction and pressure, solutions to Te, ne,

[Ar(1s5)], [Ar∗2], [Ar+], and
[
Ar+

2

]
in Equations 136 to 138 are calculated using a

numerical root-finding technique implemented in Mathematica. Initial estimates of

Te, [Ar(1s5)], [Ar∗2], [Ar+], and
[
Ar+

2

]
are input to the model, and ne is determined

from Equations 137 and 138 based on the steady-state Te.

Before analyzing the results of the simple model, it is helpful to understand the

behavior of the input electron impact rate coefficients calculated using BOLSIG+.

Ionization rate coefficients as a function of Te and Ar-fraction are displayed in Figures

98 to 100. For electron temperatures near 2.5 eV (expected in the bulk plasma),

electron impact ionization rate coefficients for Ar + e− → Ar+ + 2e− range from

4.7 × 10−12 cm3/s at lower Ar-fractions to 1.4 × 10−17 cm3/s for Ar rich mixtures.

Rate coefficients for ionization of Ar(1s5) via Ar(1s5) + e− → Ar+ + 2e− show much

less of a decrease with Ar-fraction, ranging from 2.1×10−9 cm3/s at lower Ar-fractions

to 1.3×10−9 cm3/s near pure Ar. An opposite trend is observed for ionization of Ar∗2

via Ar∗2 + e− → Ar+
2 + 2e−, which shows a slight increase with increasing Ar-fraction,
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Figure 97. Reduced electric field as a function of Ar-fraction and electron temperature,
calculated by BOLSIG+.

possessing rate coefficients near 1.3×10−7 cm3/s over all Ar-fractions for Te = 2.5 eV.

In the bulk plasma, where the electron temperatures are relatively low, the electron

impact rate coefficients for ionization of Ar∗2 are orders of magnitude larger than the

rate coefficients for ionization of Ar(1s5) or ground state Ar.

Metastable excitation rate coefficients for e− + Ar → e− + Ar(1s5) are displayed

in Figure 101 as a function of Te and Ar-fraction. Similar to the ionization rate from

ground state Ar, the metastable excitation rate coefficients show a large variation with

Ar-fraction at typical bulk plasma electron temperatures. At 2.5 eV, the excitation

rate coefficient varies from 7.8× 10−12 cm3/s for an Ar-fraction of 1% to 4.1× 10−15

cm3/s in pure Ar.

The electron impact rate coefficient for Ar∗2 dissociation is displayed in Figure

102. A relatively small increase in the rate coefficient is observed as the electron

temperature increases. Additionally, a slight increase is observed as Ar-fraction is

increased.
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Figure 98. Rate coefficient for ionization of ground state Ar as a function of Ar-fraction
and electron temperature, calculated by BOLSIG+.

Figure 99. Rate coefficient for ionization of Ar(1s5) as a function of Ar-fraction and
electron temperature, calculated by BOLSIG+.
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Figure 100. Rate coefficient for ionization of Ar∗2 as a function of Ar-fraction and
electron temperature, calculated by BOLSIG+.

Figure 101. Rate coefficient for metastable excitation from the ground state as a
function of Ar-fraction and electron temperature, calculated by BOLSIG+.
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Figure 102. Rate coefficient for Ar∗2 dissociation due to electron impact as a function
of Ar-fraction and electron temperature, calculated by BOLSIG+.

Results.

Following the zero-dimensional effective DC simulations of Section 4.2, simulations

are performed for Ar-fractions ranging from 1 to 100% in the pressure range of 200

to 500 Torr using an applied voltage of 500/
√

2 V and a gas temperature of 440 K.

The metastable density dependence on Ar-fraction and pressure is analyzed over this

parameter space using the simple model to gain insight into the kinetics controlling

metastable behavior.

To understand the metastable dependence on Ar-fraction and pressure, it is helpful

to analyze the steady-state E/N as a function of Ar-fraction and pressure due to the

strong relationship between the Ar(1s5) excitation rate coefficient and E/N . In the

bulk plasma at steady-state, the ionization rate is equal to the electron loss rate. Both

the electron loss and ionization frequencies are functions of Ar-fraction and pressure.

Analyzing the electron loss frequencies for a constant pressure of 200 Torr, as displayed

153



www.manaraa.com

in Figure 103, provides insight into the behavior as a function of Ar-fraction. For Ar-

fractions below 20%, ambipolar diffusion is the dominant loss mechanism. Above

20% Ar-fraction, dissociative recombination of Ar+
2 provides the dominant electron

loss rate while recombination of Ar+ is extremely small, playing an insignificant role

in the kinetics. Extending the simulations to entire range of pressures indicates that

the loss frequencies show little variation with pressure due to the dominant role of

Ar+
2 recombination (Figure 104). However, above 200 Torr, the role of ambipolar

diffusion is reduced due to a decrease in ion mobility, which reduces the loss rates for

the lower Ar-fractions.

To counter the electron loss rates, the total ionization rate as a function of Ar-

fraction must equal the combined loss rate. The ionization mechanisms as a func-

tion of Ar-fraction at 200 Torr are displayed in Figure 105. At Ar-fractions below

approximately 15%, ionization of ground state Ar dominates electron production.

Above 15%, ionization of Ar∗2 is the dominant ionization mechanism. This shift in

the ionization mechanism is key to the metastable behavior over Ar-fraction due to

the energy required for the two mechanisms. Ionization of ground state Ar requires

electron energies of 15.8 eV to overcome the ionization barrier. However, Ar∗2 only

requires electron energies of 3.4 eV. The key role of Ar∗2 in the kinetics of a high

pressure Ar-He discharge is exposed when analyzing the ionization mechanisms.

Ionization rates via e−+Ar∗2 → 2e−+Ar+
2 are also dependent on the Ar∗2 densities,

which are a function of Ar-fraction and pressure. Three body collisions through

Ar(1s5)+Ar+M → Ar∗2 +M increase quadratically with pressure. Additionally, the

rate for M = Ar is estimated to have twice the rate coefficient as M = He [Demyanov

et al., 2013]. This combined effect produces the Ar∗2 profile displayed in Figure 106,

which shows an increase in density as the pressure is increased.

The contributions due to each ionization mechanisms over the entire range of Ar-
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Figure 103. Electron loss frequencies as a function of Ar-fraction at a pressure of 200
Torr.

Figure 104. Electron loss frequencies as a function of Ar-fraction and pressure.
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Figure 105. Ionization frequencies as a function of Ar-fraction at a pressure of 200
Torr.

Figure 106. Ar∗2 densities as a function of Ar-fraction and pressure.
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fractions and pressures are displayed in Figures 107 to 110. Similar to Figure 105,

the dominant ionization mechanism at lower Ar-fractions for all pressures is due to

ionization from the ground state (Figure 107). As the Ar∗2 density increases, ionization

via Ar∗2 + e− → Ar+
2 + e− dominates, following the Ar2∗ density profile (Figure

108). The relative contributions of stepwise and metastable-metastable ionization

are minor, as displayed in Figures 109 and 110.

As the ionization mechanism shifts from ionization of ground state Ar to ionization

of Ar∗2, the E/N required to maintain ionization is lowered due to a reduction in the

electron energy required for ionization, as displayed in Figure 111. At 200 Torr, a

peak E/N is observed near an Ar-fraction of 15%, where the transition in ionization

mechanisms occurs. As the pressure is increased, a decrease in steady-state E/N is

predicted, and the E/N contours are shifted towards lower Ar-fractions. Near 500

Torr, the peak E/N occurs at an Ar-fraction of 10%. The general E/N trend as a

function of pressure and Ar-fraction (Figure 111) matches the trends predicted by

ZDPlasKin (Figure 68).

Reduced electric fields as a function of Ar-fraction and pressure (Figure 111)

combined with the Ar density dependence on Ar-fraction and pressure can be used

to understand the metastable excitation frequencies displayed in Figure 112. The

trend follows the E/N trend with peaks in the range of 10-15% Ar in He, shifting

to lower Ar-fractions as the pressure is increased. Additionally, due to the increase

in Ar density as pressure is increased, a slight increase in the excitation frequency is

observed with increasing pressure.

The final contribution required to understand the metastable density profile as a

function of pressure and Ar-fraction are the metastable loss rates. At 200 Torr, the

metastable loss frequencies are displayed in Figure 113. Loss frequencies at lower Ar-

fractions are dominated by quenching due to He, which may be a proxy for impurities
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Figure 107. Ionization frequency of Ar + e− → Ar+ + 2e− as a function of Ar-fraction
and pressure.

Figure 108. Ionization frequency of Ar∗2 + e− → Ar+
2 + 2e− as a function of Ar-fraction

and pressure.
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Figure 109. Ionization frequency of Ar(1s5)+e− → Ar+ +2e− as a function of Ar-fraction
and pressure.

Figure 110. Ionization frequency of Ar(1s5) + Ar(1s5) → Ar+ + Ar + e− as a function of
Ar-fraction and pressure.
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Figure 111. Reduced electric field as a function of Ar-fraction and pressure. Note the
similarity to the ZDPlasKin simulated reduced electric fields displayed in Figure 68.

Figure 112. Metastable excitation frequency via e− + Ar → e− + Ar(1s5) as a function
of Ar-fraction and pressure.

160



www.manaraa.com

(see Stefanović et al. [2014] for a discussion on quenching due to impurities). Above

approximately 50% Ar-fraction, the three-body loss mechanism of Ar(1s5) + Ar +

Ar → Ar∗2 + Ar dominates as a result of the quadratic increase in the rate with

Ar density. As the pressure is increased, the loss rates due to He quenching increase

linearly while the three-body loss rates increase quadratically. This quadratic increase

in loss rates due to excimer formation dominates the metastable loss mechanisms as

the pressure is increased, causing the loss rates for Ar-rich mixtures at high pressures

to become large (Figure 114).

Combining the metastable excitation frequencies (Figure 112) with the loss fre-

quencies (Figure 114) explains the overall metastable density profile displayed in

Figure 115. Due to the large increase in loss rates as the pressure in increased,

the metastable density shows a large decrease with pressure. The behavior versus

Ar-fraction follows the E/N trends, peaking near 15% Ar-fraction at 200 Torr and

shifting to 10% at 500 Torr.

A comparison of the simple model results with the zero-dimensional time depen-

dent simulations through ZDPlasKin is presented in Figure 116 for a pressure of 200

Torr. Overall, the predicted densities are nearly equal for both models. The slight

increase in metastable densities for the simple model are due to the removal of the

loss mechanism through Ar(1s5)+e− → Ar(1s4)+e− followed by Ar(1s4)→ Ar+~ω.

However, the large He + Ar(1s4) → He + Ar(1s5) rate at 440 K reduces the effect

of the radiation loss mechanism from Ar(1s4). The results of the simple model as a

function of Ar-fraction and pressure (Figure 115) closely follow the trends predicted

by ZDPlasKin (Figure 65).
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Figure 113. Metastable loss frequencies as a function of Ar-fraction at a pressure of
200 Torr.

Figure 114. Metastable loss frequencies as a function of Ar-fraction and pressure.
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Figure 115. Metastable density as a function of Ar-fraction and pressure using the
simplified RF-DBD model. Note the similarity to the ZDPlasKin simulated metastable
densities displayed in Figure 65.
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Figure 116. Metastable density as a function of Ar-fraction at a pressure of 200 Torr
using both a full discharge model (ZDPlasKin) and the simplified RF-DBD model.
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4.5 Conclusions

Simulations of an α-mode radio frequency dielectric barrier discharge are per-

formed for a variety of Ar-He mixtures and gas pressures. Results from a one-

dimensional fluid model are compared to a zero-dimensional effective DC model in the

bulk plasma, showing general agreement over Ar-fractions ranging from 5 to 100%

and pressures between 200 and 500 Torr. The agreement between the two models

indicates that the zero-dimensional effective DC model provides a valid approach to

modeling the bulk plasma of a high pressure RF-DBD.

Peak metastable densities at 300 Torr are observed near a 15% Ar in He mixture for

the geometry of the discharge chamber used in the simulations, corresponding to the

peak E/N for the varying mixtures. Electron temperature and electron density are

observed to increase with increasing Ar-fraction. Metastable densities are shown to

decrease with increasing pressure due to a reduction in E/N and a quadratic increase

in metastable loss rates through excimer formation: Ar(1s5) +Ar +M → Ar∗2 +M .

The decrease in bulk plasma E/N is primarily due to an increase in ionization through

Ar∗2+e− → Ar+
2 +2e−, which requires significantly less energy than ionization through

Ar + e− → Ar+ + 2e−.

Additionally, the peak Ar(1s5) density shifts from an Ar-fraction of approximately

15% at 200 Torr to 10% at 500 Torr. The increased excimer formation rate at elevated

pressures raises Ar∗2 densities for He rich mixtures, causing the peak E/N to occur

at lower Ar-fractions as the pressure is increased. This shift in E/N corresponds to a

shift in the peak metastable densities, which occur at lower Ar-fractions as pressure

is increased.

Calculations varying the applied voltage from 500 to 1750 V show an increase in

Ar(1s5) density as the voltage is increased. Bulk plasma metastable densities above

1012 cm−3 are observed for applied voltages above 750 V, corresponding to average
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applied powers greater than 25 W. While the increase in metastable density with

increasing voltage is promising, gas heating must be taken into account as the voltage

and current densities are increased to determine thresholds for thermal instabilities

that collapse the discharge to a filamentary mode. An α to γ-mode transition is

observed for an applied voltage of 1400 V using a 15% Ar-fraction at a pressure of

200 Torr with a secondary electron emission coefficient of 0.1. The spatially averaged

electron density matches the critical electron density provided by Raizer et al. [1995].

For a secondary emission coefficient of 0.01, no α to γ-mode transition is observed

in the range of applied voltages. No large increase in electron or metastable density

is observed at the onset of the γ-mode, which is most likely due to the limitations

of a one-dimensional fluid model and the subnormal current densities caused by the

dielectric barriers.

Extending the zero-dimensional simulations to a ring electrode experiment pro-

vides a comparison of simulated and measured Ar(1s5) and Ar(1s4) densities as a

function of pressure and Ar-fraction. Measured Ar(1s5) densities show a large de-

crease from 10 to 25% Ar-fraction, while the simulated peaks occur near 20% for

pressures below 160 Torr. The simulated densities show reasonable agreement with

the measured densities as a function of pressure, exhibiting a large decrease as the

pressure is increased from 10 to 160 Torr. This reduction is mainly due to a decrease

in the ambipolar diffusion loss rate which corresponds to a reduction in the bulk

plasma E/N , demonstrating the effect of electron loss rates on metastable density.

Our simulations indicate that an OPRGL using an α-mode RF-DBD in the pres-

sure range of 200-500 Torr will be provided the largest metastable density using a

mixture of approximately 15% Ar in He at 200 Torr. While the metastable density

decreases with increasing pressure, the gas pressure must also be taken into account

when mapping to laser performance. Both the diode pump absorption linewidth and
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spin orbit mixing rate via Ar(2p9) + M → Ar(2p10) + M increase with increasing

pressure, requiring a laser kinetics model to analyze laser performance as a function

of pressure and Ar-fraction for this discharge scenario.

A simplified zero-dimensional steady-state model of an RF-DBD is developed

showing excellent agreement with the time-dependent simulations from ZDPlasKin.

An analysis of the electron production and loss rates as a function of Ar-fraction and

pressure indicates that the ionization contributions of Ar+ e− → Ar+ + 2e− relative

to Ar∗2 + e− → Ar+
2 + 2e− controls the steady-state E/N , which in turn controls

metastable production rates. The metastable loss rates through Ar(1s5)+Ar+M →

Ar∗2 +M increase quadratically with pressure and are a factor of 2 larger for M = Ar

than for M = He. These combined effects cause the metastable density to decrease

with increasing pressure and produce peak metastable densities near Ar-fractions of

15% at 200 Torr shifting to 10% at 500 Torr.
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V. Optically Pumped Rare Gas Laser Simulations

An optically pumped rare gas laser with Ar as the rare gas uses a diode laser

to pump metastable Ar(1s5) atoms to the Ar(2p9) energy level [Han et al., 2013].

Near-atmospheric pressures are required for rapid collisional relaxation from Ar(2p9)

to Ar(2p10) to create a population inversion and subsequent lasing between Ar(2p10)

and Ar(1s5), as displayed in Figure 1. Additionally, the high pressures broaden the

absorption line width, enhancing pump laser absorption. Optical gain depends on the

diode laser absorption, which depends on the Ar(1s5) density [Rawlins et al., 2015;

Demyanov et al., 2013]. A gas discharge is employed to produce sufficient metastable

densities to act as the ground state of the OPRGL system.

Several kinetic studies of OPRGLs have been performed recently [Demyanov et al.,

2013; Yang et al., 2015; Rawlins et al., 2015; Han et al., 2014]. One study found

that at atmospheric pressures, a mixture of approximately 1% Ar in He provides the

largest efficiency, defined as the output power divided by sum of pump and discharge

power [Demyanov et al., 2013]. A separate kinetic analysis determined the effect

of metastable density on output laser powers, predicting output intensities above 1

kW/cm2 for metastable densities on the order of 1013 cm−3 and pump laser intensities

above 2 kW/cm2 [Yang et al., 2015].

An experimental and computational analysis of an OPRGL using microwave resonator-

driven microplasmas as the metastable source measured a laser output of 22 mW for

an absorbed pump power of 40 mW and an estimated metastable density of 3× 1012

cm−3 [Rawlins et al., 2015]. This measurement provides an optical efficiency of ap-

proximately 55%. The gain, G, was found to be linear with respect to metastable

density, following [Ar(1s5)]/G = 4× 1012 cm−2, measured at 760 Torr for a mixture

of 2% Ar in He. Additionally, a computational analysis of the laser kinetics found

a better fit to the data when an Arrhenius temperature scaling was applied to the
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neutral collision transfer rates between the different excited Ar species.

While the rate coefficients for collisional de-excitation via Ar(2p)+M → Ar(1s)+

M are well documented [Chang and Setser, 1978; Han and Heaven, 2014], the branch-

ing ratio to the specific Ar(1s) levels (1s5 to 1s2) are uncertain. Additionally, as

discussed in Chang and Setser [1978], the rate coefficients depend strongly on dia-

batic coupling near crossings of the potential energy surfaces, not just the energy

difference between states. Due to the uncertainty in the branching ratios, previous

kinetic studies of optically pumped rare gas laser performance have assumed that all

Ar(2p) +M → Ar(1s) +M collisions channel directly to Ar(1s5) bypassing the other

Ar(1s) levels [Demyanov et al., 2013; Yang et al., 2015; Rawlins et al., 2015; Han

et al., 2014].

This chapter analyzes the effect of the Ar(2p)+M → Ar(1s)+M branching ratio

on OPRGL performance with an RF-DBD as the source of metastable production.

Absorbed pump laser intensities and output laser intensities are calculated as a func-

tion of Ar-fraction, pressure, and Ar(2p) + M → Ar(1s) + M branching ratio using

a time-dependent zero-dimensional discharge model including laser kinetics. Due to

the uncertainty in the branching ratio, a sensitivity study of the branching ratio effect

on laser performance is performed. Additionally, a simplified laser kinetic model is

developed and compared to the full discharge laser model.

The OPRGL analysis is based on metastable densities simulated for the RF-DBD

scenario outlined in Section 4.2 with a peak applied voltage of 500 V. A lower voltage

was selected to ensure an α-mode discharge over all pressures and mixtures, which

corresponds to metastable densities on the order of 1011 cm−3. The relatively low

metastable densities for this discharge scenario are considerably suboptimal for laser

performance, but instead allow for a study of laser intensity trends as a function of

pressure, Ar-He mixture, and branching ratio. Alternative discharge scenarios may
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yield higher metastable densities necessary for high power OPRGL laser performance.

5.1 Model

Gas discharge simulations are performed using the zero-dimensional effective DC

model outlined in Section 4.1 with an RF-DBD as the source of metastable produc-

tion. In addition to the reactions provided in Table 2, transfer rates due to pump

laser absorption and circulating laser intensity are included [Yang et al., 2015; Za-

meroski et al., 2011; Hager and Perram, 2010; Beach et al., 2004]. The absorbed

pump intensity, Iabs, and corresponding reaction rate from Ar(1s5) to Ar(2p9), Wabs,

follow

Iabs = Ip

∫
dν gp (ν) {1− exp

[
−
(

[Ar(1s5)]− 5

7
[Ar(2p9)]

)
σpl (ν) `gain

]
} (139)

{1 +Rp exp

[
−
(

[Ar(1s5)]− 5

7
[Ar(2p9)]

)
σpl (ν) `gain

]
},

Wabs =
Iabs

Epl`gain
, (140)

where Ip = 1 kW/cm2 is the incident pump laser intensity, [Ar(1s5)] is the Ar(1s5)

density, [Ar(2p9)] is the Ar(2p9) density, `gain = 5.1 cm is the length of gain medium,

Rp is the pump laser reflectivity (assumed to be 1), and Epl is the pump transition

energy [Beach et al., 2004; Zameroski et al., 2011; Yang et al., 2015]. In this analysis,

the pump delivery and mode overlap factors are ignored (assumed to be 1). The

line shape of the pump laser, gp (ν), is assumed to be a Gaussian distribution with a

FWHM linewidth of 30 GHz [Beach et al., 2004]. The absorption cross section, σpl (ν),

is assumed to have a Lorentzian line shape with a pressure broadening coefficient of

17
√
Tgas/300 MHz/Torr, where Tgas is the neutral gas temperature in Kelvin [Rawlins

et al., 2015]. This pressure broadening coefficient is assumed to be independent of

Ar/He mixture. At 760 Torr and 300 K, the peak absorption cross section is calculated
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to be σpl ≈ 4.3 × 10−13 cm2, which is close to the value of 4.5 × 10−13 cm2 provided

by Demyanov et al. [2013].

The average two-way circulating laser intensity, Il, and corresponding reaction

rate from Ar(2p10) to Ar(1s5), Wl, follow

dIl
dt

=
Ilc

2`cavity
{RlRocT

2
r exp

[
2

(
[Ar(2p10)]− 3

5
[Ar(1s5)]

)
σul`gain

]
− 1}, (141)

Wl = σul

(
[Ar(2p10)]− 3

5
[Ar(1s5)]

)
Il
Eul

, (142)

where [Ar(2p10)] is the Ar(2p10) density, Rl is back mirror reflectivity (assumed to be

1), Roc = 0.95 is the output coupler reflectivity, Tr is the one-way cavity transmission

(assumed to be 1), `cavity is the cavity length (assumed to be equal to `gain), and Eul

is the output laser transition energy [Zameroski et al., 2011; Yang et al., 2015]. A

threshold gain of approximately 0.02 cm−1 is calculated for this system. The gain

cross section is calculated by σul = 5.0× 10−13 (Natm/N) cm2, where Natm is the gas

pressure at 760 Torr and 300 K and N is the gas density used in the simulations

[Demyanov et al., 2013]. The output laser intensity, Iout, follows [Hager and Perram,

2010]

Iout =

WlEul`gain (1−Roc)Tr exp

[(
[Ar(2p10)]− 3

5
[Ar(1s5)]

)
σul`gain

]
{exp

[(
[Ar(2p10)]− 3

5
[Ar(1s5)]

)
σul`gain

]
− 1}{1 + T 2

rRoc exp

[(
[Ar(2p10)]− 3

5
[Ar(1s5)]

)
σul`gain

]
}
.

(143)

For this study, the branching ratio is defined as the ratio of the rate coefficient for

Ar(2p) + M → Ar(1s5) + M relative to the total rate coefficient for Ar(2p) + M →

Ar(1s)+M excluding quenching to the ground state. All Ar(2p) species are assumed

to have the same branching ratio to simplify the analysis. Since Ar(1s4) is the only

other Ar(1s) level maintained in this analysis, the branching ratio can be described
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by

branching ratio =
kAr(1s5)

kAr(1s5) + kAr(1s4)

. (144)

Up to this point, a branching ratio of 50% has been assumed (Table 2) for our dis-

charge simulations. However, previous OPRGL simulations have assumed a branching

ratio of 100% [Demyanov et al., 2013; Yang et al., 2015; Rawlins et al., 2015; Han

et al., 2014], highlighting the need for a sensitivity study.

Before the inclusion of the laser rates due to the introduction of the pump laser,

zero-dimensional simulations of the RF-DBD are carried out to an initial steady-

state, providing pre-laser densities and discharge conditions. Then, the laser rates are

included and the simulations are executed to a new steady-state where the densities

and laser intensities are constant in time.

5.2 Results

Pre-laser discharge simulations are performed for an RF-DBD with an applied

voltage of 500 V peak for a variety of Ar in He mixtures and pressures ranging from

200-500 Torr. The pre-laser metastable densities in the bulk plasma show a peak

of approximately 7.0 × 1011 cm−3 near 15% Ar in He at 200 Torr, as displayed in

Figure 65 for a branching ratio of 50%. The metastable density is reduced as the

pressure is increased, and the peak metastable density shifts to a lower Ar-fraction.

At 500 Torr, the peak metastable density is reduced to ∼ 2.4× 1011 cm−3, occurring

at an Ar-fraction of approximately 10%. This decrease in metastable density with

increasing pressure is due to elevated metastable loss rates, primarily through excimer

formation via Ar(1s5) + Ar + M → Ar∗2 + M . For the discharge scenario modeled,

the peak metastable densities for all pressures in the range of 200-500 Torr are on

the order of 1011 cm−3. A slight variation in pre-laser metastable density is observed

with respect to the branching ratio, with an average relative difference under 5% for
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all mixtures and pressures when compared to the branching ratio of 50%. Pre-laser

metastable densities are not strongly dependent on the branching ratio due to the

relatively low metastable production rates from collision relaxation of Ar(2p).

After laser initiation, a drastic increase in Ar(2p) densities is observed as a result of

pump laser absorption. This increase in Ar(2p) densities increases the Ar(2p)+M →

Ar(1s) + M rates, forcing the post-laser kinetics to be strongly dependent on the

branching ratio. As displayed in Figure 117, the intensity of pump laser absorption

increases with an increasing branching ratio due mainly to a reduction in excited Ar

species densities collected in Ar(1s4). The peak absorption over all pressures and

mixtures increases from approximately 4.7 to 31.2 W/cm2 as the branching ratio

increases from 25 to 100%. Additionally, the peak absorption shifts to a higher

pressure ranging from 400 to 440 Torr as the branching ratio increases.

The output laser intensity, as displayed in Figure 118, also shows an increase

with increasing branching ratio. Similar to the pump laser absorption, the peak

laser output occurs at a higher pressure for larger branching ratios (Table 9). As

the pressure increases, the Ar(2p) + M → Ar(1s) + M rates also increase. For

lower branching ratios, this rate increase is detrimental to laser performance due to

a loss of excited species densities directly involved with laser performance: Ar(1s5),

Ar(2p9), and Ar(2p10). This loss is caused by quenching from Ar(2p) to Ar(1s4) and

subsequent pooling at Ar(1s4). As the branching ratio increases, the rate to Ar(1s4)

decreases while the rate to Ar(1s5) increases, thereby decreasing the detrimental effect

of the pressure increase. Additionally, the Ar(2p9) + M → Ar(2p10) + M relaxation

rate and pump laser absorption linewidth both increase with increasing pressure,

enhancing laser performance. The pre-laser metastable density trend is clearly visible

in the laser intensity trend as a function of Ar-fraction and pressure, and no lasing

occurs for Ar rich mixtures with reduced metastable densities at the lower branching
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(a) Branching ratio = 25% (b) Branching ratio = 50%

(c) Branching ratio = 75% (d) Branching ratio = 100%

Figure 117. Absorbed pump laser intensity as a function of Ar-fraction and
pressure for variable branching ratios. Note the change in scale for the different
images.

173



www.manaraa.com

ratios.

A peak output intensity of approximately 2.1 W/cm2 is observed at 440 Torr

for a branching ratio of 25%, while a peak of 14.2 W/cm2 is predicted at 500 Torr

for a branching ratio of 100% (Table 9). The peaks occur at an Ar-fraction of 12%

for the 100% branching ratio and at 8% Ar-fraction for the other branching ratios.

This nearly 7 fold increase in peak laser intensity highlights the importance of the

branching ratio in OPRGL operation.

Table 9. Parameters associated with peak output laser intensities as a function of
branching ratio.

Peak Laser Absorbed Pump
Intensity Pressure Intensity

Branching Ratio [W/cm2] [Torr] Ar-Fraction [W/cm2]
0.25 2.1 440 0.08 4.7
0.50 3.1 460 0.08 6.5
0.75 5.1 480 0.08 10.5
1.00 14.2 500 0.12 30.8

Analyzing the 460 Torr, 8% Ar-fraction scenario (corresponding to the peak laser

intensity for a branching ratio of 50%) as a function of branching ratio shows a nearly

7 fold increase in laser output and pump laser absorption as the branching ratio is

increased from 2 to 100% (Figure 119). The fraction of post-laser excited Ar species

population collected in Ar(1s4) is defined by Ω:

Ω =
[Ar(1s4)]post−laser

[Ar∗]post−laser
, (145)

where [Ar∗] = [Ar(1s5) + Ar(1s4) + Ar(2p10) + Ar(2p9) + Ar(2p8)]. As the branch-

ing ratio increases, Ω is reduced due to a reduction in the Ar(2p)+M → Ar(1s4)+M

rates (Figure 120). For a branching ratio of 2%, nearly 90% of the Ar∗ population is

collected in Ar(1s4), which limits the population directly involved with laser kinetics.

At a branching ratio of 100%, approximately 50% of the Ar∗ population is collected
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(a) Branching ratio = 25% (b) Branching ratio = 50%

(c) Branching ratio = 75% (d) Branching ratio = 100%

Figure 118. Output laser intensity as a function of Ar-fraction and pressure for
variable branching ratios. Note the change in scale for the different images.
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in Ar(1s4).
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Figure 119. Absorbed pump laser intensity, output laser intensity, and pre-laser
metastable density as a function of branching ratio at a pressure of 460 Torr and
8% Ar-fraction.
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Figure 120. Fraction of Ar∗ population collected in Ar(1s4), Ω, and ratio of Ar∗ density
after laser initiation to pre-laser density, Λ, as a function of branching ratio at a pressure
of 460 Torr and 8% Ar-fraction.

The reduced electric field, E/N , is weakly affected by the laser ignition due to
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the minor role of stepwise ionization. As a result, the electron impact excitation

rates of ground state Ar are weakly affected by the laser kinetics. Loss rates dimin-

ishing the overall excited Ar species densities, [Ar∗], through excimer formation or

radiation/quenching to the ground state are dependent on the Ar(1s4) and Ar(1s5)

densities. A list of the loss reactions for Ar∗ is displayed in Table 10. With the

assumption that the post-laser loss rates through Ar(1s5) are insignificant compared

to loss rates through Ar(1s4) and that the excitation rates from the ground state are

unchanged by laser kinetics, the pre-laser and post-laser loss rates are approximately

equal:

[Ar(1s5)]pre−laser (k1 [He] + k2 [Ar] [Ar] + k3 [Ar] [He])

+ [Ar(1s4)]pre−laser (k4 [Ar] [Ar] + k5 [Ar] [He] + k6)

≈ [Ar(1s4)]post−laser (k4 [Ar] [Ar] + k5 [Ar] [He] + k6) . (146)

Before laser ignition, roughly 90% of the Ar∗ density is collected in Ar(1s5), with

the other 10% in Ar(1s4). Solving for the ratio of post-laser Ar(1s4) density to total

pre-laser Ar∗ density provides the ratio Γ:

Γ =
[Ar(1s4)]post−laser

[Ar∗]pre−laser

≈ 0.9 (k1 [He] + k2 [Ar] [Ar] + k3 [Ar] [He]) + 0.1 (k4 [Ar] [Ar] + k5 [Ar] [He] + k6)

k4 [Ar] [Ar] + k5 [Ar] [He] + k6

.

(147)

This simplified form of Γ allows for an understanding of the kinetics controlling the

simulated change in Ar∗ density. From the definition of Ω in Equation 145, the
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following relationship is obtained:

Ω [Ar∗]post−laser = Γ [Ar∗]pre−laser (148)

=⇒ Λ =
[Ar∗]post−laser
[Ar∗]pre−laser

=
Γ

Ω
, (149)

where Λ is the ratio of the Ar∗ density post-laser to the Ar∗ density pre-laser.

Table 10. A list of loss reactions for the excited Ar species, Ar∗.

Rate Coefficient Rate Coefficient
Label Reaction

[
1/s, cm3/s, or cm6/s

]
Ref.

k1 Ar(1s5) +He→ Ar +He 1.60× 10−14 Han and Heaven [2016]a

k2 Ar(1s5) +Ar +Ar → Ar∗2 +Ar 3.60× 10−31T−0.6
gas Wieme and Lenaerts [1981]

k3 Ar(1s5) +Ar +He→ Ar∗2 +He 1.80× 10−31T−0.6
gas Wieme and Lenaerts [1981]b

k4 Ar(1s4) +Ar +Ar → Ar∗2 +Ar 0.95× 10−32 Wieme and Lenaerts [1981]
k5 Ar(1s4) +Ar +He→ Ar∗2 +He 0.48× 10−32 Wieme and Lenaerts [1981]b

k6 Ar(1s4)→ Ar + ~ω 1.20× 108/700 Kramida et al. [2015]c

aReaction may be a proxy for quenching due to impurities Stefanović et al. [2014]
bAssuming three-body rate coefficients with He as the third body are 1/2 the rate coefficient for Ar as the third
body
c Reduction by a factor of 700 due to radiation trapping [Holstein, 1947; Belostotskiy et al., 2011]

At a pressure of 460 Torr and a mixture of 8% Ar in He, Γ from Equation 147

is estimated to be 0.84. This estimate along with the simulated values of Ω and

Λ directly from the zero-dimensional model are displayed in Figure 120. The two

approaches provide a similar trend for Λ as a function of branching ratio. To reach

a steady-state after laser ignition, an overall increase in Ar∗ density is required to

increase the post-laser loss rates through Ar(1s4) so that they are equal to the pre-

laser loss rates. For a constant pressure and Ar-fraction Λ shows an increase from 1.0

to 1.4 as the branching ratio is increased from 2 to 100%.

The Ar∗ loss rates are functions of pressure and Ar-fraction. Repeating the cal-

culations for a pressure of 350 Torr and a mixture of 10% Ar in He provides the

ratios displayed in Figure 121. At this pressure and Ar-fraction, Γ calculated from

Equation 147 provides a value of 0.68. Unlike the 460 Torr scenario, which pre-

dicts an increase in Ar∗ densities due to laser kinetics, the 350 Torr scenario shows

a reduction in Ar∗ densities caused by laser ignition for branching ratios below ap-
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proximately 80%. At this lower pressure, the reduced pre-laser loss rates allows for a

reduced post-laser Ar(1s4) density to match the pre-laser loss rates, which causes a

reduction in the Ar∗ densities after laser ignition.
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Figure 121. Fraction of Ar∗ population collected in Ar(1s4), Ω, and ratio of Ar∗ density
after laser initiation to pre-laser density, Λ, as a function of branching ratio at a pressure
of 350 Torr and 10% Ar-fraction.

The optical to optical conversion efficiency, defined as the ratio of the output laser

intensity to the pump laser absorption, is weakly related to the branching ratio. For

the 8% Ar-fraction at 460 Torr, a change of less than 4% is observed over the range of

branching ratios, increasing from 45% to 49% as the branching ratio increases from 2

to 100%. Overall, the range of efficiencies is moderately less than the experimentally

measured efficiency of 55% [Rawlins et al., 2015].

5.3 Simplified Model

Previous kinetic models of an OPRGL have used a steady-state approach, which

estimates laser intensities and densities based on the assumption of a steady-state

[Demyanov et al., 2013; Yang et al., 2015; Rawlins et al., 2015; Han et al., 2014]. In
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this approach, discharge kinetics are assumed to be unchanged due to the introduction

laser kinetics, and the overall Ar∗ density is assumed to remain constant. To compare

the results of this simplified kinetic approach to the results of the full discharge laser

model outlined in Section 5.1, the simulations performed in Section 5.2 are repeated

using a steady-state approach.

Model Description.

Following the procedure outlined in Section 4.4, a simplified model of the laser

is developed. Instead of using a time-dependent method to calculate a steady-state

after laser ignition, a steady-state is assumed and the corresponding densities and laser

intensities are calculated directly. Initial excited Ar species densities are extracted

from the results of Section 4.2 for a 500 V applied voltage in the pressure range of

200-500 Torr. Laser parameters are the same as in Section 5.1. Electron impact rates

between excited species are ignored to fully simplify the model [Yang et al., 2015;

Rawlins et al., 2015; Han et al., 2014]. Additionally, the Ar∗ densities are assumed to

be unchanged due to laser ignition, and the loss rates for excimer formation, radiation

to the ground state, or quenching to the ground state are ignored. A list of the

reactions included in the model is displayed in Table 11, which includes spontaneous

emission and two-body neutral collisions between the different Ar∗ species.

At steady-state, there is no variation in the species densities, providing the fol-
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Table 11. A list of the reactions and rate coefficient labels used in the simple laser
model. Only spontaneous emission and two-body neutral collisions are maintained to
fully simplify the kinetic model.

Rate Coefficient
Label Reaction

k1 Ar(1s5) +He→ Ar(1s4) +He
k2 Ar(1s5) + Ar → Ar(1s4) + Ar
k3 Ar(1s4) +He→ Ar(1s5) +He
k4 Ar(1s4) + Ar → Ar(1s5) + Ar
k5 Ar(2p10) +He→ Ar(1s5) +He
k6 Ar(2p10) + Ar → Ar(1s5) + Ar
k7 Ar(2p9) +He→ Ar(1s5) +He
k8 Ar(2p9) + Ar → Ar(1s5) + Ar
k9 Ar(2p8) +He→ Ar(1s5) +He
k10 Ar(2p8) + Ar → Ar(1s5) + Ar
k11 Ar(2p9)→ Ar(1s5) + ~ω
k12 Ar(2p8)→ Ar(1s5) + ~ω
k13 Ar(2p10) +He→ Ar(1s4) +He
k14 Ar(2p10) + Ar → Ar(1s4) + Ar
k15 Ar(2p9) +He→ Ar(1s4) +He
k16 Ar(2p9) + Ar → Ar(1s4) + Ar
k17 Ar(2p8) +He→ Ar(1s4) +He
k18 Ar(2p8) + Ar → Ar(1s4) + Ar
k19 Ar(2p10)→ Ar(1s4) + ~ω
k20 Ar(2p8)→ Ar(1s4) + ~ω
k21 Ar(2p10) +He→ Ar(2p9) +He
k22 Ar(2p10) + Ar → Ar(2p9) + Ar
k23 Ar(2p10) +He→ Ar(2p8) +He
k24 Ar(2p10) + Ar → Ar(2p8) + Ar
k25 Ar(2p9) +He→ Ar(2p10) +He
k26 Ar(2p9) + Ar → Ar(2p10) + Ar
k27 Ar(2p8) +He→ Ar(2p10) +He
k28 Ar(2p8) + Ar → Ar(2p10) + Ar
k29 Ar(2p9) +He→ Ar(2p8) +He
k30 Ar(2p9) + Ar → Ar(2p8) + Ar
k31 Ar(2p8) +He→ Ar(2p9) +He
k32 Ar(2p8) + Ar → Ar(2p9) + Ar
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lowing coupled non-linear equations:

[Ar(1s5)] (k1[He] + k2[Ar]) +Wabs = [Ar(1s4)] (k3[He] + k4[Ar]) + [Ar(2p10)] (k5[He] + k6[Ar])

+[Ar(2p9)] (k7[He] + k8[Ar] + k11) + [Ar(2p8)] (k9[He] + k10[Ar] + k12) +Wl,

[Ar(1s4)] (k3[He] + k4[Ar]) = [Ar(1s5)] (k1[He] + k2[Ar]) + [Ar(2p10)] (k13[He] + k14[Ar] + k19)

+[Ar(2p9)] (k15[He] + k16[Ar]) + [Ar(2p8)] (k17[He] + k18[Ar] + k20) ,

[Ar(2p10)] (k5[He] + k6[Ar] + k13[He] + k14[Ar] + k21[He] + k22[Ar] + k23[He] + k24[Ar] + k19)

+Wl = [Ar(2p9)] (k25[He] + k26[Ar]) + [Ar(2p8)] (k27[He] + k28[Ar]) ,

[Ar(2p9)](k7[He] + k8[Ar] + k15[He] + k16[Ar] + k25[He] + k26[Ar] + k30[He] + k11)

= [Ar(2p10)] (k21[He] + k22[Ar]) + [Ar(2p8)] (k31[He] + k32[Ar]) +Wabs,

[Ar(1s5)] + [Ar(1s4)] + [Ar(2p10)] + [Ar(2p9)] + [Ar(2p8)] = [Ar∗],

RlRocT
2
r exp{2 ([Ar(2p10)]− 3[Ar(1s5)]/5)σul`gain} = 1,

(150)

where Wabs is the rate due to pump laser absorption, Wl is the rate due to circulating

laser intensity, [Ar∗] is the total excited species density before laser ignition, and the

final equation provides the threshold laser condition. The system of equations is

solved using a root finding technique implemented through Mathematica.

Results.

To begin the analysis of laser performance over Ar-fraction and pressure, it is help-

ful to analyze laser performance for a constant metastable density over all pressures

and Ar-fractions to provide insight into laser performance independent of metastable

density. A similar analysis was performed by Demyanov et al. [2013] where the maxi-

mum excitation efficiency, defined as the fraction of energy spent exciting the Ar(1s)

manifold, was used for each Ar-fraction at atmospheric pressures. This excitation

frequency does not correspond to a specific discharge, but provides the best case sce-
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nario for OPRGL operation in terms of metastable production. Similarly, the use of

a constant metastable density does not provide a realistic trend of laser intensities as

a function of Ar-fraction and pressure, but instead yields insight into the behavior of

an ideal OPRGL system independent of metastable density.

For this analysis, a metastable density of 4.5 × 1011 cm−3 is implemented for all

Ar-fractions and pressures, corresponding to the metastable density for the 300 Torr,

10% Ar-fraction RF-DBD scenario. The absorbed pump laser intensities and output

laser intensities are displayed in Figures 122 and 123 for a branching ratio of 50%.

For this scenario, the peak absorption and output laser intensity occur at a 1% Ar-

fraction and pressure of 500 Torr, indicating that the laser performance is enhanced

at lower Ar-fractions and higher pressures. This matches the results of Demyanov

et al. [2013], where the peak laser efficiency was found to occur for Ar-fractions near

1% at atmospheric pressures.

Figure 122. Absorbed pump laser intensities as a function of Ar-fraction and pressure
using a constant metastable density for all Ar-fractions and pressures and a branching
ratio of 50%.
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Figure 123. Output laser intensities as a function of Ar-fraction and pressure using a
constant metastable density for all Ar-fractions and pressures and a branching ratio of
50%.

As pressure is increased, the spin-orbit mixing rate of Ar(2p9) +M → Ar(2p10) +

M is increased, thus increasing laser performance. Collisional relaxation rates via

Ar(1s4)+M → Ar(1s5)+M at a gas temperature of 440 K are an order of magnitude

larger for He than for Ar, with the rate coefficient for M = He at 3.7×10−13 cm3/s and

the rate coefficient forM = Ar equal to 2.6×10−14 cm3/s. Additionally, the quenching

rate coefficients of Ar(2p) + M → Ar(1s) + M are at least an order of magnitude

larger for Ar than for He. Combining these effects, for a constant metastable density,

the laser performs more efficiently at low Ar-fractions and high pressures.

For a realistic calculation of the laser intensities taking into account the change in

metastable density as a function of Ar-fraction and pressure due to discharge kinetics,

the analysis above is repeated using the variable metastable density calculated for an

RF-DBD (Figure 65). The difference between this steady-state approach and the

full discharge laser model outlined in Section 5.1 is the assumption of a constant
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Ar∗ after laser ignition and the removal of discharge and electron impact kinetics. A

steady-state approach ignores the discharge kinetics and uses a provided set of initial

densities to calculate steady-state densities and laser intensities while maintaining a

constant Ar∗. The full discharge laser model calculates discharge kinetics in addition

to laser kinetics over time until a steady-state is reached.

Absorbed pump intensities and output laser intensities calculated using the steady-

state approach with a variable metastable density are displayed in Figures 124 and

125. Similar to the results from the full discharge laser model (Figures 117 and 118),

the metastable density trend is clearly visible in the laser intensity profiles. Addi-

tionally, the pressure associated with the peak absorption and output laser intensities

increases as the branching ratio is increased.

Due to a reduction in the Ar∗ density collected in Ar(1s4), the laser intensities

increase as the branching ratio is increased (Table 12). Overall, the laser intensity

trends match the trends calculated by the full discharge laser model (Table 9). How-

ever, the pressures associated with the peak output laser power are nearly 100 Torr

less than the peak pressures predicted by the full discharge laser model, and the laser

intensities for the 100% branching ratio scenario are approximately 50% less. This

difference is the result of a change in Ar∗ densities observed in the full discharge laser

model after laser ignition. At elevated pressures, the Ar∗ densities were shown to

increase due to the laser kinetics (Figure 120), and the larger branching ratios corre-

spond to a larger increase in density than the lower branching ratios. This increase

in Ar∗ densities causes an increase in the population of species directly involved with

laser performance, thus increasing the laser intensities. The simplified model does

not account for this change in density, which causes the peak intensities to occur at

lower pressures.

A comparison of the absorbed pump laser intensity and output laser intensity
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(a) Branching ratio = 25% (b) Branching ratio = 50%

(c) Branching ratio = 75% (d) Branching ratio = 100%

Figure 124. Absorbed pump laser intensity as a function of Ar-fraction and
pressure for variable branching ratios using the simplified laser model. Note
the change in scale for the different images.
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(a) Branching ratio = 25% (b) Branching ratio = 50%

(c) Branching ratio = 75% (d) Branching ratio = 100%

Figure 125. Output laser intensity as a function of Ar-fraction and pressure for
variable branching ratios using the simplified laser model. Note the change in
scale for the different images.
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Table 12. Parameters associated with peak output laser intensities as a function of
branching ratio using the simplified laser model.

Peak Laser Absorbed Pump
Intensity Pressure Intensity

Branching Ratio [W/cm2] [Torr] Ar-Fraction [W/cm2]
0.25 2.4 330 0.09 5.0
0.50 3.2 350 0.09 6.6
0.75 4.9 360 0.10 10.2
1.00 10.7 410 0.12 22.6

for the simplified and full discharge laser model as a function of branching ratio at

a pressure of 460 Torr and 8% Ar-fraction is displayed in Figure 126. Overall, the

two models are in agreement. As the branching ratio approaches 100%, the intensi-

ties from the simple model are underestimated due to a constant Ar∗ density. The

steady-state model provides a simple, fast method of calculating laser intensities and

is capable of providing insight into the dominant kinetics controlling laser behav-

ior. However, the full discharge laser model also provides insight into the change in

discharge kinetics due to the introduction of the laser rates, which is important to

understanding the complete behavior of an OPRGL system.
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Figure 126. A comparison of the absorbed pump laser intensity and output laser
intensity as a function of branching ratio for the simplified and full discharge laser
models at a pressure of 460 Torr and 8% Ar-fraction.

5.4 Conclusions

Simulations of an optically pumped rare gas laser are performed as a function of

the Ar(2p) + M → Ar(1s) + M branching ratio using a radio frequency dielectric

barrier discharge as the source of metastable production. A time dependent zero-

dimensional discharge model including laser kinetics is used to calculate pump laser

absorption and output laser intensities over a range of Ar-He mixtures from 200-

500 Torr. While the pre-laser metastable densities show a decrease with increasing

pressure, the peak output laser intensities occur at higher pressures due to the in-

creased Ar(2p9) + M → Ar(2p10) + M relaxation rates and increased pump laser

absorption linewidths. Additionally, the peak output intensity shifts to higher pres-

sures as the branching ratio is increased caused by a decrease in the detrimental

Ar(2p) + M → Ar(1s4) + M rates. A large increase in pump laser absorption and

output laser intensity are observed as the branching ratio to Ar(1s5) is increased,
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resulting in a factor of 7 increase in the peak output intensity as the branching ratio

is increased from 25 to 100%.

The Ar(1s4) species plays a key role in laser kinetics. As the branching ratio

increases, the fraction of Ar∗ populations collected in Ar(1s4) decreases, which in-

creases the densities of the species directly involved with laser performance: Ar(1s5),

Ar(2p9), and Ar(2p10). Additionally, the electron excitation rates of ground state Ar

are weakly affected by the introduction of the laser kinetics. As a result, the total

post-laser Ar∗ density evolves to match the pre-laser loss rates due to a redistribution

of the Ar∗ densities. The laser ignition can cause an increase or decrease in the Ar∗

density, depending on the Ar-fraction, pressure, and branching ratio.

A simplified model of the laser kinetics is developed, showing reasonable agreement

with the full discharge laser model. However, the peak laser intensities occur at lower

pressures for the simplified model due to a constant Ar∗ density. The full discharge

laser model allows for a change in Ar∗ density as a result of laser kinetics, which

shows an increase in density as the pressure is increased. This increase in density

corresponds to an increase in laser intensities, and provides a measure of the laser’s

influence on the plasma which cannot be captured by the simplified model.

An analysis of the laser performance for a constant initial metastable density over

all Ar-fractions and pressures indicates that laser efficiency is increased as pressure

is increased and Ar-fraction is decreased, matching the results from Demyanov et al.

[2013]. A peak output laser intensity is observed at 500 Torr (the maximum pressure

of this analysis) for a 1% Ar-fraction (the minimum Ar-fraction). As the pressure is

increased, the Ar(2p9) + M → Ar(2p10) + M mixing rates are elevated, increasing

laser intensities. Additionally, He rich mixtures account for larger Ar(1s4) + M →

Ar(1s5) + M rates and lower Ar(2p) + M → Ar(1s) + M rates, which also improve

laser performance.
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While the Ar(2p) + M → Ar(1s) + M branching ratios are not well known, the

effect on laser intensities is strong. Additional kinetic measurements of the branch-

ing ratio would be beneficial to fully understand optically pumped rare gas laser

performance.
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VI. Conclusions

Two discharge scenarios are analyzed to understand the discharge conditions

and chemical kinetics conducive to continuous, large volume production of Ar(1s5)

metastable densities on the order of 1013 cm−3 required for high-power optically

pumped rare gas laser operation. Elevated pressures increase the likelihood of thermal

instabilities, placing limitations on the types of non-thermal gas discharges capable

of stable operation at near atmospheric pressures. This analysis focuses on pulsed

direct current discharges and radio frequency dielectric barrier discharges, which are

both known to maintain stability at elevated pressures. After discharge simulations

are performed for the two scenarios, laser performance is analyzed as a function of

pressure, Ar-He mixture, and Ar(2p) + M → Ar(1s) + M branching ratio, using a

zero-dimensional discharge model including laser kinetics.

For the pulsed circuit discharge, simulations of a 7% Ar in He pulsed DC discharge

at a pressure of 270 Torr are performed for 1000 V pulses with temporal widths of 1,

20, and 35 µs using a zero-dimensional kinetic model. Species relevant to the opera-

tion of an optically pumped rare-gas laser are analyzed over a single pulse duration

to identify key kinetic pathways. Comparisons to the experimental voltage, current,

fluorescence, and absorption measurements by Han et al. [2016] show temporal agree-

ment. The inclusion of radiation trapping for the Ar(1s4) → Ar + ~ω transition

decreases post-pulse metastable decay rates, matching the measured trends.

One-dimensional fluid simulations are also performed for the 20 µs, 1000 V sce-

nario, providing spatial density profiles. Comparisons of the zero and one-dimensional

models show agreement in the positive column, where the zero-dimensional model is

appropriate. Both models predict a spike in excitation and ionization rates during

breakdown due to elevated voltage, E/N magnitude, and Te during pulse initiation.

After breakdown, the combination of a reduced electrode voltage and cathode fall for-
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mation results in a factor of 5 decrease in the positive column E/N . This reduction

in E/N drastically decreases Ar excitation and ionization via electron impact, with

an order of magnitude reduction in excitation rates and a two order of magnitude

reduction in ionization rate within 2 µs after breakdown.

Electron densities steadily approach a constant value while the dominant ion shifts

from Ar+ to Ar+
2 over the pulse duration due to three-body collisions. For the ge-

ometry and simulated discharge conditions, dissociative recombination is found to be

the dominant electron loss mechanism. Metastable loss rates rapidly increase post-

breakdown, resulting in peak metastable densities near 4 × 1012 cm−3, decreasing

by a factor of 3 over the pulse duration. Radiation trapping plays a key role in

metastable decay rates through the reaction sequence Ar(1s5) + e− → Ar(1s4) + e−

followed by Ar(1s4) → Ar + ~ω. The Ar(2p) species display initial spikes followed

by an immediate reduction in density after breakdown due to the reduced electron

excitation rates from ground state at the post-breakdown E/N . Collisions with He

are observed to be responsible for Ar(2p9) loss, with an almost equal transfer to the

Ar(2p10) and Ar(2p8) levels. As expected, excited species densities are largest near

the cathode layer, with a two order of magnitude difference between the peak and

positive column densities.

A sensitivity analysis of the reaction rate package is also performed, pinpointing

the dominant pathways for each species. The number of reactions are reduced by

placing a threshold on pathway contributions to the total rate for each species during

breakdown and after breakdown. Reducing the number of reactions from 175 to 31

produces a minor change in the simulation results. Further reducing the number

of reactions to 20 creates a noticeable difference in the simulations with a factor of

1.5 difference in the metastable densities during the pulse, compared to the full rate

package. This sensitivity analysis is performed at a pressure of 270 Torr for a 7% Ar
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in He mixture, and cannot be extended to all Ar-He discharge scenarios.

An analysis of the one-dimensional fluid model dependence on EEDF calculations

is also performed, showing a slight difference between the two methods of calculating

the EEDFs. The first method relies on EEDFs calculated from the positive column

densities predicted by ZDPlasKin, which is run prior to the fluid model to provide a

lookup table of rate coefficients based on the local Te. The second method calculates

a set of EEDFs for the fluid model densities predicted in the negative glow and a sep-

arate set of EEDFs for the positive column densities. These two sets of EEDFs are

then interpolated to provide an EEDF based on the metastable density at each posi-

tion. The positive column electron temperatures, electron densities, and metastable

densities are nearly equal for the two approaches, verifying the use of pre-calculated

EEDFs for simulations of the positive column.

Extending the analysis to an α-mode radio frequency dielectric barrier discharge,

simulations of a clam shell electrode experiment are performed for a variety of Ar-He

mixtures and gas pressures. Results from a one-dimensional fluid model are com-

pared to a zero-dimensional effective DC model in the bulk plasma, showing general

agreement over Ar-fractions ranging from 5 to 100% and pressures between 200 and

500 Torr. The agreement between the two models indicates that the zero-dimensional

effective DC model provides a valid approach to modeling the bulk plasma of a high

pressure RF-DBD.

Peak metastable densities at 300 Torr are observed near a 15% Ar in He mixture for

the geometry of the discharge chamber used in the simulations, corresponding to the

peak E/N for the varying mixtures. Electron temperature and electron density are

observed to increase with increasing Ar-fraction. Metastable densities are shown to

decrease with increasing pressure due to a reduction in E/N and a quadratic increase

in metastable loss rates through excimer formation: Ar(1s5) +Ar +M → Ar∗2 +M .
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The decrease in bulk plasma E/N is primarily due to an increase in ionization through

Ar∗2+e− → Ar+
2 +2e−, which requires significantly less energy than ionization through

Ar + e− → Ar+ + 2e−.

Additionally, the peak Ar(1s5) density shifts from an Ar-fraction of approximately

15% at 200 Torr to 10% at 500 Torr. The increased excimer formation rate at elevated

pressures raises Ar∗2 densities for He rich mixtures, causing the peak E/N to occur

at lower Ar-fractions as the pressure is increased. This shift in E/N corresponds to a

shift in the peak metastable densities, which occur at lower Ar-fractions as pressure

is increased.

Calculations varying the applied voltage from 500 to 1750 V show an increase in

Ar(1s5) density as the voltage is increased. Bulk plasma metastable densities above

1012 cm−3 are observed for applied voltages above 750 V, corresponding to average

applied powers greater than 25 W. While the increase in metastable density with

increasing voltage is promising, gas heating must be taken into account as the voltage

and current densities are increased to determine thresholds for thermal instabilities

that collapse the discharge to a filamentary mode. An α to γ-mode transition is

observed for an applied voltage of 1400 V using a 15% Ar-fraction at a pressure of

200 Torr with a secondary electron emission coefficient of 0.1. The spatially averaged

electron density matches the critical electron density provided by Raizer et al. [1995].

For a secondary emission coefficient of 0.01, no α to γ-mode transition is observed

in the range of applied voltages. No large increase in electron or metastable density

is observed at the onset of the γ-mode, which is most likely due to the limitations

of a one-dimensional fluid model and the subnormal current densities caused by the

dielectric barriers.

Extending the zero-dimensional simulations to a ring electrode experiment pro-

vides a comparison of simulated and measured Ar(1s5) and Ar(1s4) densities as a
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function of pressure and Ar-fraction. Measured Ar(1s5) densities show a large de-

crease from 10 to 25% Ar-fraction, while the simulated peaks occur near 20% for

pressures below 160 Torr. The simulated densities show reasonable agreement with

the measured densities as a function of pressure, exhibiting a large decrease as the

pressure is increased from 10 to 160 Torr. This reduction is mainly due to a decrease

in the ambipolar diffusion loss rate which corresponds to a reduction in the bulk

plasma E/N , demonstrating the effect of electron loss rates on metastable density.

Our simulations indicate that an OPRGL using an α-mode RF-DBD in the pres-

sure range of 200-500 Torr will be provided the largest metastable density using a

mixture of approximately 15% Ar in He at 200 Torr. While the metastable density

decreases with increasing pressure, the gas pressure must also be taken into account

when mapping to laser performance. Both the diode pump absorption linewidth and

spin orbit mixing rate via Ar(2p9) + M → Ar(2p10) + M increase with increasing

pressure, requiring a laser kinetics model to analyze laser performance as a function

of pressure and Ar-fraction for this discharge scenario.

A simplified zero-dimensional steady-state model of an RF-DBD is developed

showing excellent agreement with the time-dependent simulations from ZDPlasKin.

An analysis of the electron production and loss rates as a function of Ar-fraction and

pressure indicates that the ionization contributions of Ar+ e− → Ar+ + 2e− relative

to Ar∗2 + e− → Ar+
2 + 2e− controls the steady-state E/N , which in turn controls

metastable production rates. The metastable loss rates through Ar(1s5)+Ar+M →

Ar∗2 +M increase quadratically with pressure and are a factor of 2 larger for M = Ar

than for M = He. These combined effects cause the metastable density to decrease

with increasing pressure and produce peak metastable densities near Ar-fractions of

15% at 200 Torr shifting to 10% at 500 Torr.

Finally, coupling laser kinetics to the discharge kinetics for a radio frequency
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dielectric barrier discharge, simulations of an optically pumped rare gas laser are

performed as a function of the Ar(2p) + M → Ar(1s) + M branching ratio. A

time dependent zero-dimensional discharge model including laser kinetics is used to

calculate pump laser absorption and output laser intensities over a range of Ar-He

mixtures from 200-500 Torr. While the pre-laser metastable densities show a decrease

with increasing pressure, the peak output laser intensities occur at higher pressures

due to the increased Ar(2p9) + M → Ar(2p10) + M relaxation rates and increased

pump laser absorption linewidths. Additionally, the peak output intensity shifts

to higher pressures as the branching ratio is increased caused by a decrease in the

detrimental Ar(2p) + M → Ar(1s4) + M rates. A large increase in pump laser

absorption and output laser intensity are observed as the branching ratio to Ar(1s5)

is increased, resulting in a factor of 7 increase in the peak output intensity as the

branching ratio is increased from 25 to 100%.

The Ar(1s4) species plays a key role in laser kinetics. As the branching ratio

increases, the fraction of Ar∗ populations collected in Ar(1s4) decreases, which in-

creases the densities of the species directly involved with laser performance: Ar(1s5),

Ar(2p9), and Ar(2p10). Additionally, the electron excitation rates of ground state Ar

are weakly affected by the introduction of the laser kinetics. As a result, the total

post-laser Ar∗ density evolves to match the pre-laser loss rates due to a redistribution

of the Ar∗ densities. The laser ignition can cause an increase or decrease in the Ar∗

density, depending on the Ar-fraction, pressure, and branching ratio.

Similar to the simplified RF-DBD model, a simplified model of the laser kinetics is

developed showing reasonable agreement with the full discharge laser model. However,

the peak laser intensities occur at lower pressures for the simplified model due to a

constant Ar∗ density. The full discharge laser model allows for a change in Ar∗ density

as a result of laser kinetics, which shows an increase in density as the pressure is
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increased. This increase in density corresponds to an increase in laser intensities, and

provides a measure of the laser’s influence on the plasma which cannot be captured

by the simplified model.

An analysis of the laser performance for a constant initial metastable density over

all Ar-fractions and pressures indicates that laser efficiency is increased as pressure

is increased and Ar-fraction is decreased, matching the results from Demyanov et al.

[2013]. A peak output laser intensity is observed at 500 Torr (the maximum pressure

of this analysis) for a 1% Ar-fraction (the minimum Ar-fraction). As the pressure is

increased, the Ar(2p9) + M → Ar(2p10) + M mixing rates are elevated, increasing

laser intensities. Additionally, He rich mixtures account for larger Ar(1s4) + M →

Ar(1s5) + M rates and lower Ar(2p) + M → Ar(1s) + M rates, which also improve

laser performance.

While the Ar(2p) + M → Ar(1s) + M branching ratios are not well known, the

effect on laser intensities is strong. Additional kinetic measurements of the branch-

ing ratio would be beneficial to fully understand optically pumped rare gas laser

performance.

Metastable Ar(1s5) densities on the order of 1012 cm−3 are estimated for the

positive column of a pulsed direct current discharge and the bulk plasma of a radio

frequency dielectric barrier discharge for pressures in the range of 200-300 Torr and

applied voltages near 1000 V. While the Ar(1s5) density is found to increase as the

applied voltage increases, further calculations are required to analyze thermal insta-

bilities at high voltages. In regions of elevated E/N , as observed in the sheaths,

metastable densities are above the 1013 cm−3 desired for use in an optically pumped

rare gas laser. In the bulk plasma, the E/N magnitudes are reduced, which limits

the metastable densities due to decreased electron impact excitation rates. Pulsed

direct current discharges are capable of producing elevated E/N magnitudes in the
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bulk plasma for short time durations during the pulse onsets. For a steady-state dis-

charge, elevating electron loss rates in the bulk plasma may provide a mechanism for

increasing E/N magnitudes. However, excimer formation is problematic to producing

large metastable densities at atmospheric pressures.

While the metastable density is vital to laser operation, the gas pressure, tem-

perature, and Ar-He mixture are also important. As demonstrated in this analysis,

peak output laser intensities are estimated for elevated pressures and He rich mixtures

even though the metastable density is reduced at elevated pressures. The decrease

in metastable density observed with increasing pressure requires a trade-off between

metastable density and pressure to maximize laser performance.
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